
, •® Apple® II Apple IIGs®
Toolbox
Reference
Volume 2

Windows fonts

Choose Printer .
Page Setupm
Pnntm

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California 1ew York Don Mills,
Ontario Wokingham, England Amsterdam Bonn Sydney Singapore
Tokyo Madrid San Juan

9 APPLE COMPUTER, INC.

Copyright© 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro­
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan­
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
ImageWriter, LaserWriter,
Macintosh, ProDOS, and SANE
are registered trademarks of
Apple Computer, Inc.

Apple Desktop Bus is a trademark
of Apple Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17747-1
BCD EFG HIJ-D0-898
Second Printing, October 1988

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICUIAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA­
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOID "AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU­
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRIITEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica­
tion, extension, or addition to this
warranty.

Some states do not allow the exclu­
sion or limitation of implied warran­
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you . This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Contents

Volume l

Figures and tables (Volume 1) xvii

Preface Roadmap to the Apple IIGs Technlcal Manuals xxill

Introductory manuals xxv
The technical introduction xxv
The programmer's introduction xxv

Machine reference manuals xxvi
The hardware reference manual xxvi
The firmware reference manual xxvi

The toolbox manuals xxvi
The Programmer's Workshop manual xxvii
Programming-language manuals xxvii
Operating-system manuals xxviii
All-Apple manuals xxviii
How to use this manual xxix
Other materials you'll need xxxi
Notations and conventions xxxi

Typographic conventions xxxi
Watch for these xxxi

Future toolbox enhancements xxxii

Chapter 1 Introducing the Apple IIGs Toolbox 1-1

What is a tool set? 1-1
What can the tool sets do for you? 1-1
Are there any limitations? 1-2
What kinds of tool sets are provided? 1-2

The big five 1-3
Desktop interface tool sets 1-3
Math tool sets 1-4
Printer tool set 1-4
Sound tool sets 1-4
Specialized tool sets 1-4

iii

Iv Contents

Groups of routines within each tool set 1-5
Apple Desktop Bus Tool Set 1-5
Control Manager 1-5
Desk Manager 1-5
Dialog Manager 1-6
Event Manager 1-6
Font Manager 1-7
Integer Math Tool Set 1-7
LineEdit Tool Set 1-8
List Manager 1-8
Memory Manager 1-9
Menu Manager 1-9
Miscellaneous Tool Set 1-10
Print Manager 1-11
QuickDraw II 1-11
QuickDraw II Auxiliary 1-14
SANE Tool Set 1-14
Scheduler 1-14
Scrap Manager 1-15
Sound Tool Set 1-15
Standard File Operations Tool Set 1-15
Text Tool Set 1-16
Tool Locator 1-16
Window Manager 1-17

Chapter 2 Using the Apple IIGs Tool Sets 2-1

Starting up the required tool sets 2-1
Loading and starting up other tool sets 2-3
Calling the correct routine 2-5

Calling a routine from assembly language 2-5
Calling a routine from C 2-6

Passing parameters 2-6
Return from a call 2-7

Chapter 3 Apple Desktop Bus Tool Set 3-1

A preview of the Apple Desktop Bus Tool Set routines 3-1
About the Apple Desktop Bus commands 3-2
Using other Apple Desktop Bus devices 3-3
Polling the Apple Desktop Bus for data 3-3

Polling single-user applications 3-3
Polling multiuser applications 3-3

The ADB Change Address When Activated handler 3-4
The Collision Detect handler 3-4

Using the Apple Desktop Bus Tool Set 3-5
Completion routines 3-7

AsyncADBReceive completion routine 3-8
SRQ list completion routine 3-9

Apple Desktop Bus Tool Set housekeeping routines 3-10
Apple Desktop Bus Tool Set routines 3-13
Apple Desktop Bus Tool Set summary 3-28

Chapter 4 Control Manager 4-1

A preview of the Control Manager routines 4-1
Standard controls 4-3
Scroll bars 4-5
Active, inactive, and highlighted controls 4-7
Controls and windows 4-8
Part codes 4-8
Using the Control Manager 4-9
Control Manager icon font 4-11
Control records 4-11

Simple button control records 4-14
Check box control record 4-16
Radio button control record 4-18
Scroll bar control record 4-20
Size box control record 4-23

Defining your own controls 4-24
Draw routine 4-26
Test routine 4-27
Calculate indicator rectangle routine 4-28
Initialize routine 4-29
Dispose routine 4-30
Position routine 4-31
Thumb routine 4-32
Drag routine 4-35
Track routine 4-36
New value routine 4-37
Set parameters routine 4-38
Move routine 4-39
Record size routine 4-40

Control Manager housekeeping routines 4-41
Control Manager routines 4-45
Control Manager summary 4-85

Contents v

v i Contents

Chapter 5 Desk Manager 5-1

A preview of the Desk Manager routines 5-1
Using classic desk accessories 5-3

When the CDA menu can be displayed 5-3
Writing classic desk accessories 5-3

Supporting new desk accessories 5-5
Supporting new desk accessories

with TaskMaster 5-5
Supporting new desk accessories

without TaskMaster 5-6
Writing new desk accessories 5-6

Desk Manager housekeeping routines 5-9
Desk Manager routines 5-12
Desk Manager summary 5-30

Chapter 6 Dialog Manager 6-1

A preview of the Dialog Manager routines 6-1
Dialog boxes 6-4
Dialog and alert windows 6-7
Item templates 6-8

Item types 6-10
Item descriptor and item value 6-12

Myltem 6-16
Display rectangle 6-17
Item ID 6-18
Item flag 6-18
Item color tables 6-18

Dialog records 6-19
Alerts 6-19

MySound 6-22
Using the Dialog Manager 6-23
Filter procedures 6-25

MyFilter 6-25
Dialog Manager housekeeping routines 6-27
Dialog Manager routines 6-31
Dialog Manager summary 6-88

Chapter 7 Event Manager 7-1

A preview of the Event Manager routines 7-1
Two managers in one 7-3
Event types 7-3

Mouse events 7-3
Keyboard events 7-3
Window events 7-4
Other events 7-4

Event priority 7-4
Event records 7-6

Event codes 7-7
Event messages 7-8
Modifier flags 7-8

Event masks 7-10
Using the Event Manager 7-12

Responding to mouse events 7-13
Responding to keyboard events 7-13
Responding to window events 7-14
Responding to other events 7-14
Posting and removing events 7-14
Performing other operations 7-14

Capturing asynchronous key events 7-15
Journaling mechanism 7-19
Using alternative pointing devices 7-21

Writing device drivers 7-21
Installing device drivers 7-23

Devices using their own cards 7-23
Devices communicating

through the serial port 7-24
Devices communicating

through the Apple Desktop Bus 7-24
Removing device drivers 7-25

Devices using their own cards 7-25
Devices communicating

through the serial port 7-25
Devices communicating

through the Apple Desktop Bus 7-25
Event Manager housekeeping routines 7-26
Event Manager routines 7-31
Event Manager summary 7-50

Chapter 8 Font Manager 8-1

A preview of the Font Manager routines 8-2
Font records and font families 8-3

Family names and numbers 8-3
Font size 8-4
Font style 8-5
Font ID record 8-6
Base families 8-7
Real and scaled fonts 8-7
Current and system fonts 8-8

Contents vii

viii Contents

FontStatBits and FontSpecBits bit flags 8-8
FontStatBits flag 8-9
FontSpecBits flag 8-11

FamStatBits and FamSpecBits bit flags 8-12
FamStatBits flag 8-12
FamSpecBits flag 8-13

Interaction with the user 8-13
Using the Font Manager 8-14
Best-fit font algorithm 8-16
Font Manager housekeeping routines 8-18
Font Manager routines 8-23
Font Manager summary 8-50

Chapter 9 Integer Math Tool Set 9-1

A preview of the Integer Math Tool Set routines 9-1
Rounding and pinning 9-3
Using the Integer Math Tool Set 9-4
Integer Math Tool Set housekeeping routines 9-5
Integer Math Tool Set routines 9-8
Integer Math Tool Set summary 9-42

Chapter 10 Line Edit Tool Set 10-1

A preview of the LineEdit Tool Set routines 10-2
Edit records 10-4

The leDestRect and leViewRect fields 10-6
The leLineHite and leBaseHite fields 10-7
The leSelStart and leSe!End fields 10-7
The leHiliteHook and leCaretHook fields 10-9

Using the LineEdit Tool Set 10-9
Moving or scrolling windows

that contain LineEdit items 10-11
LineEdit Tool Set housekeeping routines 10-12
LineEdit Tool Set routines 10-16
LineEdit Tool Set summary 10-47

Chapter 11 List Manager 11-1

A preview of the List Manager routines 11-1
List controls and list records 11-2
List control records 11-8
Using the List Manager 11-11
Selection modes 11-12
List Manager housekeeping routines 11-13
List Manager routines 11-16
List Manager summary 11-25

Chapter 12 Memory Manager 12-1

A preview of the Memory Manager routines 12-2
Apple IIGS memory map 12-3
Pointers and handles 12-5
Memory fragmentation and compaction 12-6
Purging memory 12-8
User IDs 12-10
Assigning memory block attributes 12-12
Cleaning up memory 12-14
Using the Memory Manager 12-14
Memory Manager housekeeping routines 12-16
Memory Manager routines 12-21
Memory Manager summary 12-47

Chapter 13 Menu Manager 13-1

A preview of the Menu Manager routines 13-1
Menu bars 13-4

System menu bar 13-4
Window menu bars 13-5

Menu appearance 13-6
Keyboard equivalents for commands 13-7
Using the Menu Manager 13-7

Initializing the Memory Manager 13-8
Defining menus and items 13-8
Setting the sizes of the menu bar and items 13-9
Drawing the new menu bar 13-9
Accepting input from the user 13-9

With TaskMaster 13-10
Without TaskMaster 13-11

Menu lists: menu lines and item lines 13-13
Dividing lines and underlines 13-15
Menu bar records 13-17
Menu records 13-19
Defining your own menus 13-21

The mDrawMenu operation 13-23
The mChoose operation 13-24
The mSize operation 13-25
The mDrawTitle operation 13-26
The mDrawMitem operation 13-27
The mGetlternID operation 13-28

Menu Manager housekeeping routines 13-29
Menu Manager routines 13-33
Menu Manager summary 13-87

Contents i x

Chapter 14 Miscellaneous Tool Set 14-1

A preview of the Miscellaneous Tool Set routines 14-1
Using the Miscellaneous Tool Set 14-4
Miscellaneous Tool Set housekeeping routines 14-6
Miscellaneous Tool Set routines 14-9
Miscellaneous Tool Set summary 14-64

Chapter 15 Print Manager 15-1

x Contents

A preview of the Print Manager routines 15-2
Print dialog boxes 15-4

Choose Printer dialog box 15-4
Style dialog box 15-5
Job dialog box 15-8

Print records 15-9
Printer information subrecord 15-11
Style subrecord 15-12

ImageWriter style subrecord values 15-13
LaserWriter style subrecord values 15-13

Job subrecord 15-14
Printing modes and resolutions 15-15
Using the Print Manager 15-19

Printing loop 15-20
Printing a specified range of pages 15-21
Using QuickDraw II for printing 15-21
Sequence of events 15-22

Methods of printing 15-23
Printer and port drivers 15-23

Printer drivers 15-23
Printer peripheral cards and printer ports 15-24

Background processing 15-24
Print Manager housekeeping routines 15-25
Print Manager routines 15-29
Print Manager summary 15-47

Contents

Volume 2

Figures and tables (Volume 2) xvii

Chapter 16 QulckDraw II 16-1

A preview of the QuickDraw II routines 16-1
Drawing to the screen and elsewhere 16-9

Where QuickDraw II draws 16-9
Coordinate plane 16-10
Pixel images and the coordinate plane 16-12
GrafPort, port rectangle, and clipping 16-14
Global and local coordinate systems 16-16

How QuickDraw II draws 16-18
Drawing pen 16-18
Basic drawing functions 16-20

What QuickDraw II draws 16-21
Points and lines 16-21
Rectangles 16-22
Circles, ovals, arcs, and wedges 16-23
Polygons 16-24
Regions 16-25
Pictures 16-25

Drawing text 16-26
Simple text manipulation 16-26

Drawing in color 16-31
Color tables and palettes 16-32
Scan line control bytes 16-34
Standard color palette in 320 mode 16-35
Dithered colors in 640 mode 16-35

Cursors 16-37
Using QuickDraw II 16-39

x i

xii Contents

Fonts and text in QuickDraw II 16-41
Font definition 16-41

Apple IIGS font definition 16-41
Apple IIGS font header fields 16-43
Macintosh font part of an Apple IIGS font 16-44

Characters 16-44
Fonts 16-47

Font rectangle 16-47
Font strike 16-48
Defined versus undefined characters 16-49
Location table 16-49
Offset/width table 16-50

Character backgrounds 16-52
Font bounds rectangle 16-53
Drawing and the text buffer 16-54
Controlling text display 16-55

Character spacing calls 16-55
Style modification calls 16-56
Font flags option calls 16-56

Using the QuickDraw II font calls 16-57
Text drawing calls 16-57
Text width calls 16-58
Text bounds calls 16-58
Text buffer management calls 16-58
Font information calls 16-62

QuickDraw II housekeeping routines 16-63
QuickDraw II routines 16-68
QuickDraw II summary 16-274

Chapter 17 QuickDraw II Auxiliary 17-1

A preview of the QuickDraw II Auxiliary routines 17-1
About pictures 17-2
Style modification support 17-3
QuickDraw II Auxiliary icon record 17-3
Using QuickDraw II Auxiliary 17-5
QuickDraw II Auxiliary housekeeping routines 17-6
QuickDraw II Auxiliary routines 17-9
QuickDraw II Auxiliary summary 17-16

Chapter 18 SANE Tool Set 18-1

A preview of the SANE Tool Set routines 18-2
Using the SANE Tool Set 18-3

Performance characteristics and limitations 18-6
Differences between 65C816 and 6502 SANE 18-7
SANE Tool Set housekeeping routines 18-11
SANE Tool Set routines 18-15
SANE Tool Set summary 18-15

Chapter 19 Scheduler 19-1

A preview of the Scheduler routines 19-1
Using the Scheduler 19-2
Scheduler housekeeping routines 19-4
Scheduler routines 19-7
Scheduler summary 19-8

Chapter 20 Scrap Manager 20-1

A preview of the Scrap Manager routines 20-2
Memory and the desk scrap 20-3
Desk scrap data types 20-3
Using the Scrap Manager 20-4
Setting up a private scrap 20-5
Scrap Manager housekeeping routines 20-7
Scrap Manager routines 20-10
Scrap Manager summary 20-19

Chapter 21 Sound Tool Set 21-1

A preview of the Sound Tool Set routines 21-1
Sound hardware 21 -3
Oscillators and generators 21-5
Using the Sound Tool Set 21-6
Sound Tool Set housekeeping routines 21-7
Sound Tool Set routines 21-11
Sound Tool Set low-level routines 21-29
Sound Tool Set summary 21-36

Chapter 22 Standard FIie Operations Tool Set 22-1

A preview of the Standard File Operations Tool Set routines 22-1
Standard dialog boxes 22-3
Standard File dialog templates 22-4

Templates for the standard Open File dialog box 22-4
640 mode 22-5
320 mode 22-6

Templates for the standard Save File dialog box 22-8
640 mode 22-8
320 mode 22-10

Using the Standard File Operations Tool Set 22-13
Standard File Operations Tool Set housekeeping routines 22-15
Standard File Operations Tool Set routines 22-20
Standard File Operations Tool Set summary 22-32

Contents xiii

xiv Contents

Chapter 23 Text Tool Set 23-1

A preview of the Text Tool Set routines 23-1
Using the I/ 0 directing routines 23-3
Using the text routines 23-4
Using the Text Tool Set 23-9
Text Tool Set housekeeping routines 23-10
Text Tool Set routines 23-15
Text Tool Set summary 23-46

Chapter 24 Tool Locator 24-1

A preview of the Tool Locator routines 24-1
Using the Tool Locator 24-3
Tool Locator housekeeping routines 24-4
Tool Locator routines 24-7
Tool Locator summary 24-26

Chapter 25 Window Manager 25-1

A preview of the Window Manager routines 25-2
Window frames and controls 25-6
Window regions 25-9
Data and content areas and scroll bars 25-9
Using the Window Manager 25-10
Using TaskMaster 25-12
Window Manager icon font 25-15
Window record 25-15
Windows and Graf'Ports 25-17
Window frame colors and patterns 25-1 7
How a window is drawn 25-20

Draw content routine 25-21
Draw information bar routine 25-21

Making a window active: activate events 25-24
Defining your own windows 25-25

wDraw: draw a window frame 25-27
wHit: find what region a point is in 25-28
wCalcRgns: calculate a window's regions 25-28
wNew: perform additional initialization 25-28
wDispose: remove a window 25-29
wGrow: draw the outline of a window 25-29

Origin movement 25-29
Window Manager housekeeping routines 25-32
Window Manager routines 25-35
Window Manager summary 25-139

Appendix A Writing Your Own Tool Set A- 1

Structure of the Tool Locator A-2
Tool set numbers and function numbers A-3
Obtaining memory A-4
Tool Locator system initialization A-5
Disk and RAM structure of tool sets A-5
Installing your tool set A-6
Function execution environment A-10

Appendix B Tool Set Error Codes B-1

Appendix C Tool Set Dependencies and Startup Order C-1

Tool set dependencies C-1
Tool set startup order C-6

Appendix D List of Routines by Tool Set Number
and Routine Number D-1

Glossary (Volumes 1 and 2) G-1
Index (Volumes 1 and 2) 1-1

Contents xv

Figures and tables

Chapter 16 QuickDraw II 16-1

Figure 16-1
Figure 16-2

Figure 16-3
Figure 16-4
Figure 16-5

Figure 16-6

Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14
Figure 16-15
Figure 16-16
Figure 16-17
Figure 16-18
Figure 16-19
Figure 16-20
Figure 16-21
Figure 16-22
Figure 16-23
Figure 16-24
Figure 16-25
Figure 16-26
Figure 16-27
Figure 16-28
Figure 16-29
Figure 16-30
Figure 16-31
Figure 16-32
Figure 16-33
Figure 16-34
Figure 16-35
Figure 16-36
Figure 16-37
Figure 16-38
Figure 16-39

QuickDraw II coordinate plane 16-11
Grid lines, a point, and a pixel
on the coordinate plane 16-12
The loclnjo record 16-13
Pixel image and boundary rectangle 16-14
Boundary rectangle/ port rectangle
intersection 16-15
Drawing different parts of a document
by changing local coordinates 16-17
Drawing with pattern and mask 16-19
How pen mode affects drawing 16-19
What QuickDraw II draws 16-21
Drawing a line 16-22
Rectangle 16-23
Rounded-corner rectangle 16-23
Oval 16-23
Arc 16-24
Polygon 16-24
Region 16-25
Character 16-27
Character bounds rectangle 16-28
Master color value 16-31
Accessing the color table in 320 mode 16-32
Accessing the color table in 640 mode 16-33
Scan line control byte 16-34
Fill mode example 16-34
Cursor record 16-37
Font definition 16-42
Character with no kerning 16-46
Character kerning left 16-46
Font rectangle (simulated) 16-47
Part of a font strike 16-48
Character rectangle in font rectangle 16-51
Character bounds rectangle 16-52
Font bounds rectangle 16-53
ROM font record 16-142
Standard SCB 16-145
PaintPixels parameter block 16-191
BufDimRec 16-206
Font flags word 16-226
Pen state record 16-238
Text face flag 160-258

xvii

Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7
Table 16-8
Table 16-9
Table 16-10
Table 16-11
Table 16-12
Table 16-13

QuickDraw II routines and their functions 16-2
Pen modes 16-20
Text modes 16-30
Standard palette in 320 mode 16-35
Standard palette in 640 mode 16-36
QuickDraw II- other tool sets required 16-39
Standard color tables 16-159
Standard pen state 16-196
Pen modes 16-235
Text-only modes 16-260
QuickDraw II constants 16-274
QuickDraw II data structures 16-276
QuickDraw II error codes 16-278

Chapter 17 QuickDraw II Auxiliary 17-1

Figure 17-1
Figure 17-2
Table 17-1

Table 17-2

QuickDraw II Auxiliary icon record 17-3
The displayMode word 17-4
QuickDraw II Auxiliary routines
and their functions 17-2
QuickDraw II Auxiliary-
other tool sets required 17-5

Chapter 18 SANE Tool Set 18-1

Figure 18-1
Figure 18-2
Table 18-1
Table 18-2

SANE return information 18-7
SANE direct page on halt 18-9
SANE Tool Set routines and their functions 18-2
SANE Tool Set-other tool sets required 18-3

Chapter 19 Scheduler 19-1

Table 19-1
Table 19-2

Scheduler routines and their functions 19-2
Scheduler-other tool sets required 19-2

Chapter 20 Scrap Manager 20-1

Table 20-1 Scrap Manager routines and their functions 20-2
Table 20-2 Public scrap types 20-4
Table 20-3 Scrap Manager-other tool sets required 20-4
Table 20-4 Scrap Manager constants 20-19
Table 20-5 Scrap Manager error codes 20-19

xvi ii Figures a nd tables

Chapter 21 Sound Tool Set 21-1

Figure 21-1
Figure 21-2
Figure 21-3
Figure 21-4
Figure 21-5
Figure 21-6
Table 21-1
Table 21 -2
Table 21 -3
Table 21-4
Table 21-5

Table 21-6
Table 21-7
Table 21-8

Sound hardware block diagram 21-3
Sound GLU registers 21-4
Generator status word 21-12
Channel-generator-type word 21-16
Sound parameter block 21-17
Stop-sound mask 21-19
Sound Tool Set routines and their functions 21-2
DOC register allocation 21-4
Oscillator registers 21-5
Sound Tool Set-other tool sets required 21-6
Jump table addresses for Sound Tool Set
low-level routines 21-23
Sound Tool Set constants 21-36
Sound Tool Set data structures 21-37
Sound Tool Set error codes 21-37

Chapter 22 Standard File Operations Tool Set 22-1

Figure 22-1
Figure 22-2
Figure 22-3
Figure 22-4
Figure 22-5
Table 22-1

Table 22-2

Table 22-3
Table 22-4

Table 22-5

Standard Open File dialog box 22-3
Standard Save File dialog box 22-3
File directory entry 22-23
Typelist record 22-23
Reply record 22-24
Standard File Operations Tool Set routines
and their functions 22-2
Standard File Operations Tool Set­
other tool sets required 22-13
Filter procedure results 22-22
Standard File Operations Tool Set
constants 22-32
Standard File Operations Tool Set
data structures 22-32

Chapter 23 Text Tool Set 23-1

Figure 23-1
Table 23-1
Table 23-2
Table 23-3
Table 23-4
Table 23-5

Character echo-flag word 23-29
Text Tool Set routines and their functions 23-1
Character device driver types 23-3
Text Tool Set-other tool sets required 23-9
Text Tool Set constants 23-46
Text Tool Set error codes 23-47

Figures and tables xix

Chapter 24 Tool Locator 24-1

Figure 24-1
Table 24-1
Table 24-2
Table 24-3
Table 24-4
Table 24-5
Table 24-6

Tool table 24-12
Tool Locator routines and their fu nctions 24-2
Tool set numbers 24-13
MessageCenter message types 24-15
State record 24-18
Tool Locator constants 24-26
Tool Locator error codes 24-26

Chapter 25 Window Manager 25-1

x x Figures and tables

Figure 25-1
Figure 25-2
Figure 25-3
Figure 25-4
Figure 25-5
Figure 25-6
Figure 25-7
Figure 25-8
Figure 25-9
Figure 25-10
Figure 25-11
Figure 25-12
Figure 25-13

Figure 25-14

Figure 25-15
Figure 25-16
Figure 25-17
Figure 25-18
Figure 25-19
Figure 25-20

Window 25-1
Window frames 25-6
Standard window controls 25-7
Sample document windows 25-7
Proportional scroll bars 25-10
TaskMaster's TaskRec (task record) 25-13
The wmtaskMask bit flag 25-14
Window record 25-16
Document and alert window color table 25-17
Window frame color (JrameColor) 25-18
Window title color (titleColor) 25-18
Window title bar color (tBarColor) 25-19
Window size box and alert window's
middle outline color (growColor) 25-19
Window information bar and alert window's
inside outline color (infoColor) 25-20
Window origin 25-29
Window moving and origins 25-30
Scrolling and window origins 25-31
Grow image of a window 25-76
NewWindow window frame type 25-85
SetFrameColor newColorPtr
and theWindowPtrvalues 25-100

Table 25-1
Table 25-2
Table 25-3
Table 25-4
Table 25-5

Table 25-6
Table 25-7
Table 25-8
Table 25-9
Table 29-10
Table 29-11
Table 25-12
Table 25-13
Table 25-14

Window Manager routines and their functions 25-2
Window Manager-other tool sets required 25-10
Window Manager icon font 25-15
The varCode parameters for custom windows 25-25
Window Manager Desktop routine operations
and parameters 25-40
Desktop patterns 25-43
DragWindow grid values 25-45
FindWindow constants 25-49
NewWindow parameter list 25-84
Window global mask values 25-137
Window global flag values 25-137
Window Manager constants 25-139
Window Manager data structures 25-142
Window Manager error codes 25-144

Appendix A Writing Your Own Tool Set A-1

Table A-1 Structure of a TPT (tool pointer table) A-2
Table A-2 Structure of an FPT (function pointer table) A-2
Table A-3 Standard tool set routine numbers A-3
Table A-4 Tool Locator permanent RAM space A-4

Appendix B Tool Set Error Codes B-1

Table B-1 Tool set error codes B-1

Appendix C Tool Set Dependencies and Startup Order C-1

Table C-1 Tool set dependencies C-2
Table C-2 Tool set startup order C-6

Appendix D List of Routines by Tool Set Number
and Routine Number D-1

Table D-1 Routines by tool set/routine number D-2

Figures and tables xx i

Chapter 16

QuickDraw II

Any time your desktop application needs to draw something, it uses QuickDraw II
(and its extension, QuickDraw II Auxiliary). QuickDraw II is an adaptation and
extension of the Macintosh toolbox component QuickDraw- it performs similar
operations but has been enhanced to support Apple IIGS color.

QuickDraw II allows your application to

• Perform graphic operations easily and quickly

• Draw lines and shapes of various sizes and patterns

• Draw items in a variety of colors or gray scales

• Draw text in different fonts and with styling variations, such as italics and boldface

A preview of the QuickDraw II routines
To introduce you to the capabilities of QuickDraw II, all QuickDraw II routines are
grouped by function and briefly described in Table 16-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the QuickDraw II
routines (discussed in alphabetical order) .

16-1

Table 16-1
QulckDraw II routines and their functions

Routine Description

Housekeeping routines
QDBootinit Initializes QuickDraw II; called only by the Tool Locator- must not be called by an

QDStartUp
QDShutDown
QDVersion
QDReset

QDStatus

application
Starts up QuickDraw II for use by an application
Shuts down QuickDraw II when an application quits
Returns the version number of QuickDraw II
Resets QuickDraw II; called only when the system is reset-must not be called by an
application
Indicates whether QuickDraw II is active

Global environment routines
GetStandardSCB Returns a copy of the standard scan line control byte (SCB)
SetMasterSCB Sets the master SCB to a specified value
GetMasterSCB Returns a copy of the master SCB
InitColorJable Returns a copy of the standard color table for the current mode
SetColorTable Sets a specified color table to specified values
GetColorTable Fills a specified color table with the contents of another color table
SetColorEntry Sets the value of a color in a specified color table
GetColorEntry Returns the value of a specified color in a specified color table
SetSCB Sets the SCB to a specified value
GetSCB Returns the value of a specified SCB
SetAllSCBs Sets all SCBs to a specified value
SetSysFont Sets a specified font as the system font
GetSysFont Returns a handle to the current system font
ClearScreen Sets the words in screen memory to a specified value
GrafOn Turns on Super Hi-Res graphics mode
GrafOff Turns off Super Hi-Res graphics mode
SetBufDims Sets the size of the QuickDraw II clipping and text buffers, padding the values to

permit large values of chExtra and spExtra and to allow for style modifications
ForceBufDims Sets the size of the QuickDraw II clipping and text buffers, but doesn't pad the values

SaveBufDims
RestoreBufDims

in any way
Saves QuickDraw II's buffer-sizing information in an eight-byte record
Restores QuickDraw II's internal buffers to the sizes described in the eight-byte
record created by the SaveBufDims routine

16-2 Chapter 16: QuickDraw II

Table 16-1 (continued)
QulckDraw II routines and their functions

Routine Description

Graf Port routines
OpenPort

InitPort
ClosePort
SetPort
GetPort
SetPortLoc
GetPortLoc
SetPortRect
GetPortRect
SetPortSize
MovePortTo
SetOrigin

Initializes specified memory locations as a standard GrafPort, allocates a new
visible region and a new clipping region, and makes the GrafFort the current port
Initializes specified memory locations as a standard port
Deallocates the clipping and visible regions in a port
Makes a specified port the current GrafFort
Returns a pointer to the current GrafPort
Sets the current port's loclnfo record to specified location information
Gets the current port's loclnfo record and puts it at the specified location
Sets the current GrafPort's port rectangle to the specified rectangle
Returns the current GrafPort's port rectangle
Changes the size of the current GrafFort's port rectangle
Changes the location of the current GrafPort's port rectangle
Adjusts the contents of the port rectangle and the bounds rectangle so the upper
left corner of the port rectangle is set to the specified point
Copies a specified region into the clipping region
Copies the clipping region to a specified region

SetClip
GetClip
ClipRect Changes the clipping region of the current GrafFort to a rectangle that is equivalent

to a specified rectangle
Pen and pattern routines
HidePen Decrements the pen level
ShowPen Increments the pen level
GetPen Returns the pen location
SetPenState Sets the pen state in the GrafPort to specified values
GetPenState Returns the pen state from the GrafFort to a specified location
SetPenSize Sets the current pen size to a specified pen size
GetPenSize Returns the current pen size to a specified location
SetPenMode Sets the current pen mode to a specified pen mode
GetPenMode Returns the pen mode from the current GrafFort
SetPenPat Sets the current pen pattern to a specified pen pattern
GetPenPat Copies the current pen pattern from the current GrafFort to a specified location
SetSolidPenPat Sets the pen pattern to a solid pattern using the specified color
SetPenMask Sets the pen mask to a specified mask
GetPenMask Returns the pen mask to a specified location
SetBackPat Sets the background pattern to a specified pattern
GetBackPat Copies the current background pen pattern from the current GrafPort to a specified

SetSolidBackPat
SolidPattern
PenNormal
MoveTo
Move

location
Sets the background pattern to a solid pattern using a specified color
Sets a specified pattern to a solid pattern using a specified color
Sets the pen state to the standard state; pen location is not changed
Moves the current pen location to a specified point
Moves the current pen location by specified horizontal and vertical displacements

(continued)
A preview of the QulckDraw II routines 16-3

Table 16-1 (continued)
QuickDraw II routines a nd the ir functions

Routine

Font routines
SetFont
GetFont
GetRomFont
SetFontID
GetFontID
GetFontlnfo
GetFGSize
GetFontGlobals
SetFontFlags
GetFontFlags
SetTextFace
GetTextFace
SetTextMode
GetTextMode
SetSpaceExtra
G etS pace Extra
Se tChar Extra
GetCharExtra
SetForeColor
GetForeColor
SetBackColor
GetBackColor

Description

Sets the current font to a specified font
Returns a handle to the current font
Fills a specified buffer with information about the font in ROM
Sets the Jont!D field in the GrafPort
Returns the Jont!D field of the GrafFort
Returns information about the current font in a specified record
Returns the size of the font globals record
Returns information about the current font in a specified record
Sets the font flags word to a specified value
Returns the current font flags word
Sets the text face to a specified value
Returns the current text face
Sets the text mode to a specified value
Returns the current text mode
Sets the spExtra field in the GrafPort to a specified value
Returns the value of the spExtra field from the GrafPort
Sets the chExtra field in the GrafPort to a specified value
Returns the chExtra field from the GrafFort
Sets the JgColor field (foreground color) in the GrafFort to a specified value
Returns the value of the current Jg Color field (foreground color) fro m the GrafP ort
Sets the bgColor field (background color) in the GrafFort to a specified value
Returns the value of the current bgColorfield (background color) from the GrafPort

M isce lla neous GrafPort routines
SetClipHandle Sets the clipRgn handle field in the GrafPort to a specified value
GetC!ipHandle Returns a copy of the handle to the clipping region
SetVisRgn Copies a specified region into the visible region (but does not change the visRgn

field of the GrafPort)
GetVisRgn
SetVisHandle
GetVisHandle
SetPicSave
GetPicSave
SetRgnSave
GetRgnSave
SetPolySave
GetPolySave
SetGrafFrocs
GetGrafFrocs
SetUserField
GetUserField
SetSysField

GetSysField

Copies the contents of the visible region into a specified region
Sets the visRgn field in the GrafPort to a specified value
Returns a copy of the handle to the visible region
Sets the picSave field in the GrafPort to a specified value
Returns the value of the picSave field of the GrafPort
Sets the rgnSave field in the GrafPort to a specified value
Returns the value of the rgnSave field of the GrafPort
Sets the polySave field in the GrafPort to a specified value
Returns the value of the polySave field of the GrafPort
Sets the grajProcs field of the current GrafPort to a specified value
Returns the pointer to the grajProcs record associated with the GrafPort
Sets the userField field in the GrafPort to a specified value
Returns the value of the userField field of the GrafPort
Sets the sysField field in the GrafPort to a specified value-must not be called by an
application
Returns the value of the sysField field of the GrafFort

16-4 Chapter 16: QuickDraw II

Table 16-1 (continued)
QulckDraw II routines and their functions

Routine Description

Line drawing routines
LineTo Draws a line from the current pen location to a specified point
Line Draws a line from the current pen location to a new point specified by the

horizontal and vertical displacements

Rectangle drawing routines
FrameRect Draws the frame of a specified rectangle using the current pen mode, pen pattern,

PaintRect

EraseRect
InvertRect
FillRect

and pen size
Paints the interior of a specified rectangle using the current pen mode and pen
pattern
Erases the interior of a specified rectangle by filling it with the background pattern
Inverts the pixels in the interior of a specified rectangle
Fills the interior of a specified rectangle with a specified pen pattern

Round rectangle drawing routines
FrameRRect Draws the frame of a specified round rectangle using the current pen mode, pen

PaintRRect

EraseRRect

InvertRRect
FillRRect

pattern, and pen size
Paints the interior of a specified round rectangle using the current pen mode and
pen pattern
Erases the interior of a specified round rectangle by filling it with the background
pattern
Inverts the pixels in the interior of a specified round rectangle
Fills the interior of a specified round rectangle with a specified pen pattern

Region drawing routines
FrameRgn Draws the frame of a specified region using the current pen mode, pen pattern,

PaintRgn

EraseRgn
InvertRgn
FillRgn

and pen size
Paints the interior of a specified region using the current pen mode and pen
pattern
Erases the interior of a specified region by filling it with the backgound pattern
Inverts the pixels in the interior of a specified region
Fills the interior of a specified region with a specified pen pattern

Polygon drawing routines
FramePoly Draws the frame of a specified polygon using the current pen mode, pen pattern,

PaintPoly

ErasePoly
InvertPoly
FillPoly

and pen size
Paints the interior of a specified polygon using the current pen mode and pen
pattern
Erases the interior of a specified polygon by filling it with the background pattern
Inverts the pixels in the interior of a specified polygon
Fills the interior of a specified polygon with a specified pen pattern

(continued)

A preview of the QulckDraw II routines 16-5

Table 16-1 (continued)
QuickDraw II routines and their functions

Routine Description

Oval drawing routines
FrameOval Draws the frame of a specified oval using the current pen mode, pen pattern, and

PaintOval
Erase Oval
InvertOval
FillOval

Arc drawing routines
FrameArc

PaintArc
EraseArc
InvertArc
Fil!Arc

Pixel transfer routines

pen size
Paints the interior of a specified oval using the current pen mode and pen pattern
Erases the interior of a specified oval by filling it with the background pattern
Inverts the pixels in the interior of a specified oval
Fills the interior of a specified oval with a specified pen pattern

Draws the frame of a specified arc using the current pen mode, pen pattern, and
pen size
Paints the interior of a specified arc using the current pen mode and pen pattern
Erases the interior of a specified arc by filling it with the background pattern
Inverts the pixels in the interior of a specified arc
Fills the interior of a specified arc with a specified pen pattern

ScrollRect Shifts the pixels inside the intersection of a specified rectangle, visible region,

PaintPixels
PPToPort

clipping region, port rectangle, and bounds rectangle
Transfers a region of pixels
Transfers pixels from a source pixel map to the current port and clips the pixels to
the current visible region and clipping region

Text drawing and measuring routines
DrawChar Draws a specified character at the current pen location and updates the pen

DrawText
DrawString

DrawCString
CharWidth
TextWidth
String Width

CStringWidth

Char Bounds
TextBounds
StringBounds

CStringBounds

location
Draws specified text at the current pen location and updates the pen location
Draws a specified Pascal-type string at the current pen location and updates the
pen location
Draws a specified C string at the current pen location and updates the pen location
Returns the character width, in pixels (pen displacement), of a specified character
Returns the character width, in pixels (pen displacement), of specified text
Returns the sum of all character widths, in pixels (pen displacements), of a
specified Pascal-type string
Returns the sum of all the character widths, in pixels (pen displacements), of a
specified C string
Puts the character bounds rectangle of a specified character into a specified buffer
Puts the character bounds rectangle of specified text into a specified buffer
Puts the character bounds rectangle of a specified Pascal-type string into a
specified buffer
Puts the character bounds rectangle of a specified C string into a specified buffer

16-6 Chapter 16: QuickDraw II

Table 16-1 (c ontinued)
QuickDraw II routines and their functions

Routine Description

Calculations with rectangles
SetRect Sets a specified rectangle to specified values
OffsetRect Offsets a specified rectangle by specified displacements
InsetRect Insets a specified rectangle by specified displacements
SectRect Calculates the intersection of two rectangles and places the intersection in a

UnionRect

PtinRect

Pt2Rect

Equa!Rect
NotEmptyRect

destination rectangle
Calculates the smallest rectangle that contains both source rectangles and places
the result in a destination rectangle
Detects whether the pixel below and to the right of a specified point is in a specified
rectangle
Copies a specified point to the upper left corner of a specified rectangle and
another point to the lower right corner of the rectangle
Indicates whether two rectangles are equal
Indicates whether a specified rectangle is not empty

Calculation s with points
AddPt Adds two specified points together and leaves the result in the destination point
SubPt Subtracts the source point from the destination point and leaves the result in the

SetPt
EqualPt
LocalToGlobal
GlobalToLocal

destination point
Sets a point to specified horizontal and vertical values
Indicates whether two points are equal
Converts a point from local coordinates to global coordinates
Converts a point from global coordinates to local coordinates

Calculations with regions
NewRgn Allocates space for a new region and initializes it to an empty region-this is the

DisposeRgn
CopyRgn
SetEmptyRgn

SetRectRgn

RectRgn

OpenRgn

CloseRgn
OffsetRgn
InsetRgn
SectRgn

only way to create a new region
Deallocates the memory for a specified region
Copies the region definition from one region to another
Destroys previous region information by setting a specified region to an empty
region
Destroys previous region information by setting a specified region to a specified
rectangle
Destroys previous region information by setting a specified region to a specified
rectangle
Allocates temporary space and starts saving lines and framed shapes for later
processing as a region definition
Completes the region definition process started by an OpenRgn call
Moves a region on the coordinate plane a specified distance
Shrinks or expands a specified region
Calculates the intersection of two regions and places the intersection in a
destination region

(continued)

A preview of the QuickDraw II routines 16-7

Table 16-1 (continued)
QuickDraw II routines and their functions

Routine Description

Calculations with regions
UnionRgn Calculates the smallest region that contains every point that is in either source

region and places the result in a destination region
DiffRgn Calculates the difference of two regions and places the difference in a destination

XorRgn

PtlnRgn

RectlnRgn
EqualRgn
EmptyRgn

region
Calculates the difference between the union and the intersection of two regions and
places the result in a destination region
Checks to see whether the pixel below and to the right of a specified point is within a
specified region
Checks whether a specified rectangle intersects a specified region
Indicates whether two regions are equal
Indicates whether a specified region is empty

Calculations with polygons
OpenPoly Returns a handle to a polygon data structure that will be updated by future LineTo

calls
ClosePoly
Kil!Poly
OffsetPoly

Completes the polygon definition process started with an OpenPoly call
Disposes of a specified polygon
Offsets a specified polygon by specified horizontal and vertical displacements

Mapping and scaling utllltles
MapPt Maps a specified point from a source rectangle to a destination rectangle
MapRect Maps a specified rectangle from a source rectangle to a destination rectangle
MapRgn Maps a specified region from a source rectangle to a destination rectangle
MapPoly Maps a specified polygon from a source rectangle to a destination rectangle
ScalePt Scales a specified point from a source rectangle to a destination rectangle

Cursor-handling routines
SetCursor Sets the cursor to an image passed in a specified cursor record
GetCursorAdr Returns a pointer to the current cursor record
HideCursor Hides the cursor by decrementing the cursor level
ShowCursor Shows the cursor by incrementing the cursor level
ObscureCursor Hides the cursor until the mouse moves
InitCursor Reinitializes the cursor

Misce llaneous QulckDraw II utilities
Random Returns a pseudorandom number in the range -32768 to 32767
SetRandSeed Sets the seed value for the random number generator
GetPixel Returns the pixel below and to the right of a specified point
GetAddress Returns a pointer to a specified table
SetintUse Indicates to the cursor drawing code whether the code should use scan line

interrupts
SetStdProcs Sets up a specified record of pointers for customizing QuickDraw II operations

16-8 Chapter 16: QuickDraw II

Drawing to the screen and elsewhere
QuickDraw II can draw to the screen or to other parts of Apple IIGS memory. In fact,
printing a document with the Print Manager involves using QuickDraw II to "draw"
your document into a memory buffer used by the Print Manager (see Chapter 15,
"Print Manager," in Volume 1).

To get our bearings, we'll first consider where QuickDraw II draws. Then we'll briefly
discuss how it draws, and finally look at what it draws.

Where QuickDraw II draws
The question of where QuickDraw II draws involves consideration of Apple IIGS
memory (including screen memory) as well as QuickDraw !I's own internal
representation of its drawing universe. These are the main concepts for you to
remember :

• Drawings are stored in Apple IIGS memory as pixel images, ordered collections of
bytes that represent rectangular arrays of pixels. Screen memory contains a
special pixel image-its contents are displayed on the computer's monitor.

• QuickDraw II draws its text and graphic objects on an abstract two-dimensional
mathematical surface called the coordinate plane. Points on a plane are much
easier to visualize and manipulate than addresses in memory. Locations on the
QuickDraw II coordinate plane are related to pixel-image locations by specific
location information supplied to QuickDraw II.

• QuickDraw II draws most objects within the context of graphic ports. A port is a
complete drawing environment and defines, among other things, a specific part
of memory and a specific rectangular area on the coordinate plane where drawing
can occur. There can be many ports open at a time-some for drawing to the
screen, some for drawing to other parts of memory. Different ports' drawing
spaces may be separate from each other, or they may overlap.

• QuickDraw II can be made to clip, or constrain its drawing, to within limits of
arbitrary size, shape, and location.

• By manipulating two independent sets of coordinates (global coordinates and
local coordinates), an application can easily control both what gets drawn inside
a port's drawing space and where on the screen or other pixel image that drawing
space appears.

Drawing to the screen a nd e lsewhere 16-9

Coordinate plane

QuickDraw II locates every action it takes in terms of coordinates on a two­
dimensional grid, as shown in Figure 16-1. The grid is QuickDraw II's coordinate
plane; coordinates on the plane are integers ranging from - 16K to +16K in both the
X and Y directions. The point (0,0) , therefore, is in the middle of the grid. Note
also that grid values increase to the right and downward on the plane; this is
different from what you might be used to, but it is the direction and order in which
video scan lines are drawn.

Units on the grid are in terms of pixels. Thus a 10 x 10 square on the coordinate
plane is equivalent to a rectangle 10 pixels by 10 pixels on the display screen (this
would not be a square, of course, because Apple IIGS pixels are not square). Only a
very small portion of the coordinate plane can be displayed on the screen at any one
time-the plane is 32,000 pixels on a side, and the screen can show a maximum of
640 pixels by 200 pixels at a time. The small black square near the center of the grid
in Figure 16-1 shows the approximate size of the screen (in 320 mode) compared with
the coordinate plane.

Warning

QulckDraw II must not be asked to draw outside the coordinate plane.
Commands to draw outside this space will produce unpredictable results. They
won't generate errors.

•!• Mactntosh programmers: This conceptual drawing space is not the same as that
for QuickDraw on the Macintosh. On the Macintosh, the drawing space is 64K by
64K pixels centered around 0,0, which makes the boundary coordinates
-32K,-32K and 32K,32K.

16-10 Chapter 16: QuickDraw II

- 16,384

+ 16,384

Figure 16-1
QuickDraw II coordinate plane

+ 16,384

200

Size of screen
(320 mode)

To understand how QuickDraw II does its drawing, we need to consider how it
represents some basic graphic elements. On the coordinate plane, grid lines are
considered to be infinitely thin. A point is defined as the intersection of two grid
lines, so it also has no dimensions. Pixels, on the other hand, have a definite size;
they are thought of as falling between the lines of the grid. The smallest element
QuickDraw II can draw is a pixel, so if it were to draw a point at the location (3,3) on
the coordinate plane, it would have to draw a single pixel. But which one? The point
is between four pixels.

Drawing to the screen and e lsewhere 16-11

QuickDraw defines the pixel corresponding to each point on the plane as the pixel
immediately below and to the right of the point, as shown in Figure 16-2.

(0,0) 1

1

2

3

4

Figure 16-2

2 3 4

~ I Grid lines

Point (3,3)

Pixel

Grid lines, a point, and a pixel on the coordinate plane

Pixel images and the coordinate plane

A pixel image is an area of memory that contains a graphic image. The image is
organized as a rectangular grid of pixels occupying contiguous memory locations.
Each pixel has a value that determines what co:lor in the graphic image is associated
with that pixel.

•!• Macintosh programmers: QuickDraw II's pixel images are similar to Macintosh
QuickDraw's bit images. The major difference is that a pixel is described by
more than a single bit.

QuickDraw II draws to the coordinate plane. However, the coordinate plane is really
just an abstract concept. Inside the Apple IIGS, drawing actu:1.lly occurs by modifying
pixel images-that is, by modifying the contents of certain memory locations. In
particular, drawing something visible on the screen involves modifying the pixel
image corresponding to screen memory.

16-12 Chapter 16: QuickDraw II

The data structure that ties the coordinate plane to memory is the loc!nfo (for
location information) record. The loc!nfo record tells QuickDraw II where in
memory to draw, how the pixel image in that part of memory is arranged, and what
that image's position on the coordinate plane is. The structure of the loclnfo record
definition is shown in Figure 16-3, and each field is described in more detail
following the figure .

Offset Field
$0 .---------,

p ortSCB

2

3
4

5

6

trToPlxlmage

~------1

width

7 f--------i
8

' ' boundsRect

OF\~-~
Figure 16-3
The Joclnfo record

Word-Replica of scan line control byte

Long-POINTER to first byte of pixel image

Word-INTEGER; width, in bytes, of each line In pixel Image
(must be even multip le of 8)

Four words-RECT data structure defining boundary rectangle

The fields are as follows:

• The portSCB (a replica of the scan line control byte) tells QuickDraw II how many
bits per pixel there are in this image-two for 640 mode, four for 320 mode. The
scan line control byte and the differences between 640 mode and 320 mode are
discussed further in the section "Drawing in Color" in this chapter.

• The ptrToPt:x:Image field contains the image pointer; that is, the memory
address of the image. It points to the first byte of the pixel image, which contains
the first (upper leftmost) pixel.

• The width field specifies the image width; that is, the width (in bytes, not pixels)
of each line in the pixel image. QuickDraw II needs to know this so it can tell where
each new row in the image starts. (The image width must be an even multiple of
eight bytes.)

• The boundsRect (for boundary rectangle) is a RECT data structure defining the
rectangle that maps the pixel image onto the coordinate plane. The top left point
in the rectangle corresponds to the first pixel in the image. The bottom right of
the rectangle describes the extent of the pixel image (as far as QuickDraw II is
concerned) .

Drawing to the screen and elsewhere 16-13

The image pointer, the image width, and the boundary rectangle defined by the
boundsRect are shown in Figure 16-4.

r 0. . (0 0) ng1n = B d oun

Image po inter

~
;,
' /

v •

I I/
l byte
= 2 pixels

in 320
mode

Image width

Figure 16-4
Pixel image and boundary rectangle

ary rec ang le

J

Entire grid represents
pixel image in memory.

Lower right
=(29,15)

•:• Note: Remember that what separates one pixel image from another is where in
memory it is stored, not where on the QuickDraw II coordinate plane its
boundary rectangle happens to be. You can think of each pixel image as having
its own private copy of the entire coordinate plane to play with, so even if two
pixel images have overlapping coordinate plane locations, there won't be any
conflict between them if they occupy completely different parts of computer
memory.

Graf Port, port rectangle, and clipping

Most drawing takes place in conjunction with a data structure called a GrafPort (for
graphic port). Each GrafPort contains a complete specification of a drawing
environment, including the location information (loc!nfo record) described
earlier. In addition to the location information, a GrafPort contains three other
fields that restrict where drawing in a pixel image can take place: the port rectangle,
clipping region, and visible region.

The port rectangle (as specified by the portRect field in the GrafPort) is a rectangle
on the coordinate plane. Any drawing through a GrafPort occurs only inside its port
rectangle. When you look at a window on the screen in a desktop application, its
interior (everything but its frame) corresponds to a port rectangle. Windows are
described further in Chapter 25, "Window Manager."

16-14 Chapter 16: QuickDraw II

The port rectangle can coincide with the boundary rectangle, or it can be different.
You can think of it as a movable opening that allows access to all or part of the pixel
image. As Figure 16-5 shows, QuickDraw II can draw only where the boundary
rectangle and port rectangle overlap.

(0,0)

, 1 /

-0-
/ I "

Boundary rectangle

(200,200)

Port rectangle

0

Figure 16-5
Boundary rectangle/port rectangle intersection

The clipping region (as specified by the cltpRgn field in the Grafport) is provided
for an application to use. When a GrafPort is opened or initialized, the clipping
region is set to the entire coordinate plane (effectively preventing any clipping from
occuring). The program can use the clipping region any way it wants. Drawing to a
pixel image through a Grafport occurs only inside the clipping region.

The visible region (as specified by the visRgn field in the Grafport) is normally
maintained by the Window Manager. An application can have multiple windows on
the screen, each one associated with a GrafPort. Windows can overlap, and each
port's visible region represents the parts of the window that are visible.

•!• Note: When using GrafPorts that are not associated with windows, it is up to your
application to maintain the visible region. When a Grafport is opened or
initialized, its visRgn field is set to be equal to the portRect field. It will stay that
way until your program changes it.

In summary, drawing occurs in a pixel image only in the intersection of the boundary
rectangle, port rectangle, clipping region, and visible region.

Drawing to the screen and elsewhere 16-15

Global and local coordinate systems

In QuickDraw II's universe, everything is positioned in terms of coordinates on the
plane. However, if you think of multiple open windows on the screen, you can see
that there are at least two different ways in which you might want to locate objects:

• You may want to specify where windows appear on the screen (when they are
moved, for example).

• You may want to specify where objects appear within windows (when scrolling, for
example) independently of where on the screen the windows may be.

The toolbox needs global coordinates whenever more than one GrafPort share the
same pixel image; the global coordinates tell QuickDraw II exactly where every port
rectangle is compared with every other one. The global coordinate system for each
GrafPort is that in which the boundary rectangle for its pixel image has its origin at
(0,0) on the coordinate plane. In QuickDraw II, the origin of a rectangle is its upper
left corner. For drawing to the screen, you can think of global coordinates as screen
coordinates, where the top left corner of the screen is the point (O,O).

However, each port also has its own local coordinate system. For example, when
drawing into a port, you can think in terms of distance from the port rectangle's
origin rather than the boundary rectangle's origin. By defining the port rectangle as
starting at (0,0), you can base all your drawing commands on distance in from the
left edge and down from the top of the port rectangle.

That's convenient for drawing in a window, but local coordinates offer more
convenience than that. They aren't constrained to a value of (0,0) for the port
rectangle origin-you can set them to any coordinate-plane value. Why would you
want to? Because of the way drawing commands work.

Suppose you are using a window to display portions of a document that is larger than
the port rectangle in size-a fairly common occurrence. You are using drawing
commands that draw the entire document, and you know that's no problem because
the drawing will be automatically clipped to the port rectangle. But how do you
control which part of the document shows through in your window? You do it by
adjusting local coordinates.

16-16 Chapter 16: QuickDraw II

For example, consider a document that has (0,0) as its origin. All QuickDraw II's
drawing commands are based on the current port's local coordinate system. So if
location (0,0) in your GrafFort's local coordinates correspond to the port rectangle's
upper left corner, any time you draw your document into that port, its upper left
corner will be displayed. If you define your local coordinates differently, different
parts of your document will appear in the window. Thus, you can think of local
coordinates as document coordinates-the upper left corner of the document that
the port displays is the local coordinate origin-as shown in Figure 16-6.

Port
rectangle

Size of
document

being drawn
into port

Figure 16-6

(0,Q)
a. PortRect origin= (0,Q)

in local coordinates

(0,0)

(50,250)

b. PortRect origin = (50, 250)
in local coordinates

Drawing different parts of a document by c hanging local coordinates

•:• Note: When the local coordinates of a GrafPort are changed, the coordinates of
the GrafPort's boundary rectangle and visible region are similarly recalculated,
so the port will not change its relative position on the screen or its relation to
other open ports on the screen.

However, when the local coordinates are changed, the GrafPort's clipping region
and pen location are not changed-that is, they would appear to shift right along
with the image that is being viewed in the port. It makes sense to have the pen (which
is used to modify the image being viewed) and the dipping region (which is used to
mask off parts of the image being viewed) stay with the image.

Drawing to the screen and elsewhere 16-17

How QuickDraw II draws
The way QuickDraw II draws any of its objects depends on the drawing environment
specified in the current GrafPort. Each GrafPort record includes location and
clipping information (described earlier), information about the graphics pen
(described next), information about any text that will be drawn (described in the
section "Drawing Text" in this chapter), and other information, such as the patterns
to draw with.

Drawing pen

Each open port has its own drawing pen. The pen controls where and how drawing
(of both text and graphics) occurs. It has several characteristics (which can be set by
the application) that control this .

Pen location: The pen has a coordinate-plane location (in local coordinates). The
pen location is used only for drawing lines and text--other shapes are drawn
independently of pen location.

Pen size: The pen is a rectangle that can have almost any width or height. Its default
size is 1 x 1 (pixels). If either the width or the height is set to 0, the pen will not draw.

Pen pattern: The pen pattern is a repeating array (eight pixels by eight pixels) that is
used like ink in the pen. Wherever the pen draws, the pen pattern is drawn in the
image. The pattern is always aligned with the coordinate plane so that adjacent areas
of the same pattern drawn at different times will blend in a continuous manner.

Background pattern: The background pattern is an array similar to the pen pattern.
The process of erasing is that of drawing with the background pattern.

Drawing mask: The drawing mask is an eight-bit by eight-bit pattern that is used to
mask, or screen off, parts of the pattern as it is drawn. Only those pixels in the
pattern aligned with an on (1) bit in the mask are drawn. Figure 16-7 shows how a
mask affects drawing with a pattern.

16-18 Chapter 16: QuickDraw II

8x8 pattern

•••••••• • • • •••••••• • • •
8x8

drawing mask

•
8x8 pattern

with mask applied

• • • •
•
• • • •

•
Figure 16-7

Repeated
every 8 pixels

l!i!i!i!i!i!!!!!!!i!

CJ ??:i:;:i:):;

::i:i::i::i::i::i::

Drawing with pattern and mask

Note that drawing with a mask in which every bit has the value 1 is like drawing with no
mask at all-all pen pixels are passed through to the image. Likewise, drawing with a
mask that is all O's is like not drawing at all-all pen pixels are blocked.

Pen mode: The pen mode specifies one of eight Boolean operations (modeCopy,
notCopy, modeOr, notOR, modeXOR, notXOR, modeBIC, and notBIC) that
determine how the pen pattern is to affect an existing image. When the pen draws,
QuickDraw II compares pixels in the existing image with their corresponding pixels in
the pattern and then uses the pen mode to determine the value of the resulting pixels.
For example, with a pen mode of modeCopy, the existing pixels' values are
ignored-a solid black line is black regardless of the image already on the plane.
With a pen mode of notXOR, the bits in each pen pixel are inverted, then combined
in an exclusive-OR operation with the bits in each corresponding existing pixel.
Figure 16-8 shows a filled rectangle drawn over an existing circle, in both modeCopy
and notXOR mode.

COPY mode

Figure 16-8
How pen mode affects drawing

notXOR mode

Drawing to the screen and elsewhere 16-19

The uses for the different pen modes are shown in Table 16-2. For more detail on
how to use the modes, see the section "SetPenMode" in this chapter.

Table 16-2
Pen modes

Mode

modeCopy, notCopy

modeOR, notOR

modeXOR, notXOR

modeBIC, notBIC

Description

Copy source (or NOT source) to destination. The mode Copy mode is the
typical drawing mode. For text, the fully colored text pixels (both foreground
and background) are copied into the destination.

Overlay (OR) source (or NOT source) and destination. Use mode OR to
nondestructively overlay new images on top of existing images and notOR to
overlay inverted images. For text, the fully colored text pixels (both
foreground and background) are ORed with the destination.

Exclusive-or (XOR) pen with destination. Use these modes for cursor drawing
and rubber-banding. If an image is drawn using modeXOR, the appearance of
the destination at the image location can be restored merely by drawing the
image again in modeXOR. For text, the fully colored text pixels (both
foreground and background) are XORed with the destination.

Bit Clear (BIC) pen with destination ((NOT pen) AND destination). Use this
mode to explicitly erase (turn off) pixels, often prior to overlaying another
image. You can use notBIC to display the intersection of two images. For
text, the fully colored text pixels (both foreground and background) are
BICed with the destination.

Basic drawing functions

QuickDraw II draws lines using the current pen size, pen pattern, drawing mask, and
pen mode. It draws other shapes (rectangles, rounded-corner rectangles, ovals,
arcs, polygons, and regions) in five different ways:

• Framing uses the current pen size, pen pattern, drawing mask and pen mode to
draw an outline of the shape.

• Painting uses the current pen pattern, drawing mask, and pen mode to fill the
interior of the shape.

• Erasing uses the current background pattern and drawing mask to fill the interior
of the shape.

• Inverting uses the drawing mask to invert the pixels in the interior of the shape.

• Filling uses a specified pattern and the drawing mask to fill the interior of the
shape.

QuickDraw II draws text as described in the section "Drawing Text" in this chapter.

16-20 Chapter 16: QulckDraw II

What QuickDraw II draws

QuickDraw II can draw a number of graphic objects into a pixel image. It draws text
characters in a variety of monospaced and proportional fonts, with styling variations
that include italics, boldface, underlining, outlining, and shadowing. It draws
straight lines of any length, width, and pattern. It draws hollow or pattern-filled
rectangles, circles, and polygons. It draws elliptical arcs and filled wedges, irregular
shapes, and collections of shapes. It also draws pictures-combinations of these
simple shapes. Figure 16-9 summarizes QuickDraw II's graphic objects.

Lines

Polygons

Figure 16-9

Rectangles and
rounded-corner

rectangles

Regions

What QuickDraw II draws

Points and lines

Circles
and ovals

Normal
Bold
Italic
Underlined

Text

Arcs and
wedges

A point is represented mathematically by its Y and X coordinates-these are two
integers.

Important

QulckDraw il's data structure that defines a point has the vertical coordinate
first: (y,x) rather than (x,y).

Drawing to the screen and elsewhere 16-21

A line is represented by its ends-two points, or four integers. Like a point, a line is
infinitely thin. When drawing a line, QuickDraw II moves the top left comer of the
pen along the mathematical trajectory from the current pen location to the
destination location. The pen hangs below and to the right of the trajectory, as
illustrated in Figure 16-10.

Starting
pen location ~

1

Pen size and l \
pattern \

\
\

\ I
- 11-

Destination location _____/
1

Figure 16-10
Drawing a line

The line as drawn

Before drawing a line, you can use QuickDraw II calls to set the current pen location
and other characteristics, such as pen size, mode, and pattern.

Rectangles

A rectangle is also represented by two points-its upper left and lower right corners.
The borders of a rectangle are infinitely thin. Rectangles are fundamental to
QuickDraw II; there are many functions for moving, sizing, and otherwise
manipulating rectangles .

The pixels associated with a rectangle are only those within the rectangle's bounding
lines. Thus, the pixels immediately below and to the right of the bottom and right­
hand lines of the rectangle are not part of it.

Important

QulckDraw ll's RECT data structure has coordinates In the following order: top,
left, bottom, right. Thus, the defining coordinates for the rectangle in Figure 16-11
are (1,2,7 ,6). This order may be different from what you are used to, but it is
consistent with the (y ,x) ordering of points.

16-22 Chapter 16: QuickDraw II

0 2 3 4 5 6 7 8

1 : · .. - - - - - - - - - - - - - - - - - - -

2

3 :

4

5 .

6

8

Figure 16-11
Rectangle

------ The rectangle is
defined by the points
(1,2) a nd (7,6).

It encloses 24 pixels.

Rectangles may have square or rounded corners. The corners of rounded-corner
rectangles (Figure 16-12) are sections of ovals (discussed next); they are specified
by an oval height and an oval width.

Figure 16-12
Rounded-corner rectangle

Oval height

Oval width

Circles, ovals, arcs, and wedges
Ellipses and portions of ellipses form another class of shapes drawn by QuickDraw II.
An oval (Figure 16-13) is an ellipse; it is defined in the same way as a rectangle, with
the exception that QuickDraw II is told to draw the ellipse enscribed within the
rectangle rather than the rectangle itself. If the enclosing rectangle is a square, the
resulting oval is a circle.
,---------- ------- ------ -
' I
I
I
I
I
I
I
I
I
I
I

I ~~'!11!!1!!!1!!1!~~ I
_____ _ ______________ _ ___ J

Figure 16-13
Oval Drawing to the screen and elsewhere 16-23

•!• Pixel shape: Remember, Apple IIGS pixels are not square. A perfect circle (or
square) on the screen will have unequal horizontal and vertical dimensions in
terms of pixels.

An arc (Figure 16-14) is a portion of an oval defined by the oval's enclosing rectangle
and by two angles (the beginning and the end of the arc) and measured clockwise
from vertical.

If an arc is painted, filled, inverted, or erased, it becomes a wedge; its fill pattern
extends to the center of the enclosing rectangle, within the area defined by the
beginning and ending angle lines.

r----- -- --- - ---- ---------------,

Figure 16-14
Arc

Polygons

I

~---~ ' - Start angle

A polygon (Figure 16-15) is any sequence of connected lines. You define a polygon
by moving the pen to the starting point of the polygon and drawing lines from there
to the next point, from that point to the next, and so on.

-------------- - - --1
---...... -.. I

Figure 16-15
Polygon

I
I
I
I
I
I

16-24 Chapter 16: QulckDraw II

Polygons are not treated exactly the same as other closed shapes, such as rectangles.
For example, when QuickDraw II draws (frames) a polygon, it draws outside the
actual boundary of the polygon because the line-drawing r.outines draw below and to
the right of the pen locations. When it paints, fills, inverts, or erases a polygon,
however, the fill pattern stays within the boundary of the polygon. If the polygon's
ending point isn't the same as its starting point, QuickDraw II adds a lipe between
them to complete the shape.

Regions

A region is another fundamental element of QuickDraw II, one that can be
considerably more complex than a line or a rectangle. A region (Figure 16-16) is
defined as a collection of shapes or lines (or other regions) whose outline is one or
more closed loops. Your application can draw, erase, move, or manipulate regions
the way it does any other QuickDraw II shapes.

You can define regions by drawing lines, framing shapes, manipulating existing
regions, and equating regions to rectangles or other regions.

Regions are particularly important to the Window Manager, which must keep track of
often irregularly shaped, noncontiguous portions of windows in order to know when
to activate the windows or what parts of them to update.

Figure 16-16
Region

Pictures

A picture is a collection of QuickDraw II drawing commands. Its data structure
consists of little more than the stored commands. QuickDraw II plays the commands
back when the picture is reconstructed with a DrawPicture call. A complex
mechanical drawing produced from an Apple IIGS drafting program might be saved
as a single QuickDraw II picture.

Pictures can be used to transfer data between applications via the Clipboard. See
Chapter 20, "Scrap Manager."

Drawing to the screen and elsewhere 16-25

Drawing text

QuickDraw II doesn't draw only graphic images-it also does all text drawing for
desktop applications. As an application writer, you can easily control the
placement, size, style, font, and color of display text with QuickDraw II calls.

Your program can provide QuickDraw II with text in the following formats:

• Character: A single ASCII character at a time

• Pascal string: A length byte followed by a sequence of ASCII characters

• C string: A sequence of ASCII characters terminated by a O byte ($00)

• Text block: A number of ASCII characters in a buffer, with the number specified
separately

QuickDraw II draws the text in the same format in which it receives it. It draws each
character at the current pen location, with the current font, using the current text
mode, with the current character style, and using the current foreground and
background colors. After text is drawn, the pen position is updated.

Simple text manipulation

This section introduces the text concepts you will need to know about for most
applications. For most applications, you won't need to know anything more about
fonts than is presented in this section. If you're writing an application that lets the
user choose from a selection of fonts, or if you're developing an application that
requires a specific font, you'll also need to know about the Font Manager. See
Chapter 8, "Font Manager," in Volume 1.

A font is a collection of graphical and numerical information representing a set of
characters. The graphical part of the font is called the font strike and consists of all
the images of the characters, placed one after another. (The font strike in a IIGS font
is stored in a one-bit-per-pixel format.) By convention, no blank space is left
between the character images in the font strike; when text is drawn, both the space left
between characters and the positioning of characters are determined by several
tables of numerical information that are also part of the font. For the precise format
of a IIGS font, see the section "Font Definition" in this chapter.

QuickDraw II always displays and measures text using the current font (whose handle
is found in the fontHandle field of the current GrafPort).

A font has a base line (a horizontal line that runs throught the font strike), an ascent
(the number of rows of pixels of the font above the base line), and a descent (the
number of rows below). Each character in a font has a character image (the piece
of the font strike that represents the character, using a bit set to 1 to represent the
character's foreground pixels), a character origin (a point on the base line used to
position the character with respect to the current pen position), and a character
width (the number of pixels QuickDraw II will advance the pen position after it draws
the character).

16-26 Chapter 16: QuickDraw II

These concepts are illustrated in Figure 16-17.

Figure 16-17
Character

Character width

Image width

Ascent line

Character
rectangle

Font
height

Base line

'- Next character origin
Descent line _)

When a character is drawn, it's placed so its character origin coincides with the
current pen position. The character image's 1 bits, as mentioned, determine the
foreground pixels. (The O bits of the character image are background pixels, but
they are not the character's only background pixels. The precise definition of
background pixels is provided later in this section.)

After the character is drawn, the pen is automatically advanced by the character
width. The next character drawn will have its character origin at this new pen
position (if the pen hasn't been moved first). Characters drawn one after the other
are thus strung out horizontally in the expected manner.

For most characters in most fonts, the character image will lie between the old pen
position and the new one. In fact, the new pen position will usually be several pixels
to the right of the rightmost pixels of the character image; this supplies the small
amount of blank space between characters. However, some characters in some fonts
may have foreground pixels that lie to the left of the old pen position or to the right of
the new pen position (or both). This is called kerning. When kerning occurs, the
character images of adjacent characters (that is, characters drawn one after another)
may possibly overlap.

Drawing to the screen and elsewhere 16-27

The character bounds rectangle determines the extent of the background pixels of
a character. The character bounds rectangle, relative to a current pen position and
starting from the character origin, extends as follows:

• As far up as the font's ascent

• As far down as the font's descent

• As far left as the current (old) pen position, or as far as the character's leftmost
foreground pixel, whichever is farther left (it is the leftmost foreground pixel if the
character kerns to the left)

• As far right as the subsequent (new) pen position, or as far as the character's
rightmost foreground pixel, whichever is farther right (it is the rightmost
foreground pixel if the character kerns to the right)

Because pen positions are points, not pixels, the phrase as Jar left as the current pen
position means that it includes the pixels immediately to the right of the current pen
position. Similarly, as Jar right as the subsequent pen position means that it
includes the pixels immediately to the left of the subsequent pen position.

This defines the character bounds rectangle, as shown in Figure 16-18.

Character
origin

Figure 16-18

Character bounds width

Ascent line

Character bounds
rectangle

Character
rectangle

Base line

"-Next character origin
______ ..___ Descent line

Character bounds rectangle

The character bounds rectangle contains all the foreground pixels of the character;
that was the point of extending it as far as any kerning the character does in either
direction. The background pixels of a character are defined to be all pixels in the
character bounds rectangle that are not foreground pixels. Thus, the background
pixels include all the pixels corresponding to O bits in the character image; in
addition, they generally include tµose pixels extending from the old pen position to
the new.

16-28 Chapter 16: QuickDraw II

When QuickDraw II draws a character-say, using the pen mode modeCopy, with a
foreground color of red and a background color of green- the foreground pixels are
colored red and the background pixels are colored green. Our definition ensures
that the background will at least go from pen position to pen position and that it will
go far enough so no kerning foreground pixels will extend beyond the background.

The QuickDraw II routine CharBounds calculates the character bounds rectangle of a
specified character in local coordinates based on the current pen position. Every
pixel that could be affected by drawing the character is located inside the character
bounds rectangle. This is different from the QuickDraw II call CharWidth, which
simply returns the character width of a specified character-that is, the amount by
which the pen position would be advanced if the character were drawn. The width of
the character bounds rectangle is not the same thing as the character width; either
one may be larger than the other, or one may even be O and the other nonzero. It is
not necessary, however, that the widths be different, and for some characters, they
may be the same.

•:• Note: Neither CharBounds nor CharWidth actually draws the character.

When QuickDraw II draws a string (whether a Pascal-type string, a C-type string, or a
text block), it draws the individual characters of the string into an internal text buffer,
advancing the position in the text buffer by the character width after each character
and ORing the character images together whenever they overlap (as they may with
kerning). Then the entire string is drawn into the destination pixel image, using the
current text mode, foreground and background colors, and so on. The pen position
is advanced by the sum of the character widths of all the characters in the string.

The QuickDraw II routines StringWidth, CStringWidth, and TextWidth return the
amount the pen would be advanced if the specified string or text were to be drawn;
that is, they return the sum of the character widths of all the characters in the string or
text.

The QuickDraw II routines StringBounds, CStringBounds, and TextBounds return the
smallest rectangle that would enclose all the foreground and background pixels of the
string if it were drawn; in effect, they return the string bounds rectangle. This is
the same as the UnionRect of all the individual character bounds rectangles (if the
characters were drawn one after another).

Important

The rectangle is not necessarily the same as the rectangle you would get If you
strung out the character bounds rectangles one after another, with the right
edge of each touching the left edge of the next. Because of kerning, the
character bounds rectangles of characters In a string may overlap.

•:• Note: Neither the bounds calls nor the width calls actually draw anything.

Drawing to the screen and elsewhere 16-29

The bounds calls and width calls take into account any active style modifications,
chExtra and spExtra values, and fontFlags settings that may affect either the area
covered by foreground and background pixels or the amount the pen is advanced
after text drawing. The QuickDraw II routine GetFontlnfo takes into account the style
modifications, but not the values of chExtra, spExtra, or JontFlags. The QuickDraw II
routines GetFontLore and GetFontGlobals report on the current font as it exists in
memory and do not take into account any of the other values mentioned.

In addition to the pen modes, which can be used for text, text can also be drawn in
eight special text-only modes (four modes and their opposites). The uses for the
different text modes are shown in Table 16-3. The opposite modes (notForeCopy,
notForeOR, notForeXOR, and notForeBic) work the same way as the original
modes, except that the foreground pixels are turned to background pixels and the
background pixels are turned to foreground pixels before the operation is
performed. For more detail on how to use the modes, see the section
"SetTextMode" in this chapter.

Table 16-3
Text modes

Mode

modeForeCopy, notForeCOPY

modeForeOR, notForeOR

modeForeXOR, notForeXOR

modeForeBIC, notForeBIC

Description

Copies only the foreground pixels into the destination­
background pixels are not altered

ORs only the foreground pixels into the destination­
background pixels are not altered

XORs only the foreground pixels into the destination­
background pixels are not altered

BICs only the foreground pixels into the destination; that is,
inverts the source pixels and ANDs them with the
destination-background pixels are not altered

If you need to know more about how fonts are drawn and constructed (if, for
example, you want to write a font-editing application), see the section "Fonts and
Text in QuickDraw II" in this chapter.

16-30 Chapter 16: QulckDraw 11

Drawing in color

The video display hardware of the Apple IIGS includes advanced color capabilities.
Although tool calls make it unneccessary for you to manipulate the hardware directly,
knowledge of a few background concepts will help you understand the way
QuickDraw II manipulates the colors on the screen.

The Apple IIGS offers two Super-Hi-Res graphics modes. Both modes have 200 scan
lines, but the scan lines differ in horizontal resolution-one mode has 320 pixels (the
color of each specified by four bits), and the other has 640 pixels (the color of each
specified by two bits). In changing from 320 mode to 640 mode, the horizontal
resolution is doubled at the expense of dividing the color resolution by 4.

Both modes use a chunky pixel organization (in which the bits for a given pixel are
contained in adjacent bits within one byte), as opposed to bit planes (in which
adjacent bits in memory affect adjacent pixels on the screen). Therefore, the four
bits of a pixel in 320 mode are in the same memory locations as the four bits of a pair
of adjacent two-bit pixels in 640 mode.

Colors on the Apple IIGS are determined from master color values, which are
mathematical combinations of the primary red, blue , and green hues available on a
color monitor. A master color value is a two-byte number, formatted as shown in
Figure 16-19.

J1sJ14J13J12J11110191a17161 s 14 I 3 I 2 I 1 Io I
Rere,ved, not :,ed J , T J

Red intensity

Green intensity

Blue intensity

Figure 16- 19
Master color value

A three-digit hexadecimal number can describe each master color, with one digit
($0-$F) for each primary color. Thus, a master color value of $000 denotes black,
$FFF is white, $00F is the brightest possible blue, $080 is a medium-dark green, and
so on. Because each primary color has 16 possible values, 4,096 colors are possible.

At any one time, the Apple IIGS uses only a small subset of all possible colors. An
application does so by constructing one or more color tables, short lists of the
available colors for any one pixel.

Drawf ng to the screen and elsewhere 16-3 l

Color tables and palettes

Pixels contain only two or four bits, and it takes 12 bits to specify a master color
value. Thus, applications cannot use master color values to directly specify pixel
colors. Instead, the pixel value is a two- or four-bit offset into a color table.

A color table is a table of 16 two-byte entries. Each entry in the table is a master color
value; any of the 4,096 possible color values may appear in any position in the color
table. The colors available to the application, as specified in its color tables,
constitute its palette.

Pixels in 320 mode are represented in memory by four-bit integers. For each pixel,
that four-bit value is used as an a offset into a color table. With four bits, there are 16
possible pixel values, so the available colors for each pixel in 320 mode equals
16-the entire color table-as shown in Figure 16-20.

0 \

l
\

\
2 \
3 \
4 \

5 \ 1 p ixel

6 \ is 4 bits
I

Palette
7

8
9

\
Offset into table;

lnlnlnlnl = maximum value
I is 15 (1111)

I
10 I

11 I

12 I

13 I

14
I

I
15 It

Figure 16-20
Accessing the color table In 320 mode

16-32 Chapter 16: QulckDraw II

Pixels in 640 mode are represented in memory by two-bit integers. With two bits,
there are only four possible pixel •;alues to offset into the color table. To avoid
limiting 640 mode to only four colors, however, each four adjacent pixels in 640
mode use four different parts of the same color table; a color table, then, consists of
four minipalettes, which needn't have the same sets of master colors. Therefore,
although each individual pixel in 640 mode can have one of only four colors, groups
of four pixels can have a total of 16 colors from which to choose, as shown in
Figure 16-21.

0

Minipalette 3 l

2

3

4

Minipale tte 4 5

6

7

8

Minipalette 1 9

10

11

12

Minipalette 2 13

14

15

Figure 16-21

Pixel 3
is 2 bits

',, ~

~
, , ' Pixel 4

is 2 bits
',, ~

~
, , ' Pixel l

is 2 bits
',, ~

~
Pixel 2
is 2 bits

',, ~

~

Accessing the color table In 640 mode

Offset into
minlpalette;
maximum
value is 3(11)

How to use this ability to create a large variety of colors is described in the section
"Dithered Colors in 640 Mode" in this chapter.

Drawing to the screen and elsewhere 16-33

Scan line control bytes

An application may construct as many as 16 different color tables to choose from.
Each of the 200 scan lines in Super Hi-Res graphics can use any one of the 16 tables.
For each scan line, a scan line control byte (SCB) decides which color table is
active, as shown in Figure 16-22.

17 161s14l3l2 I 1 101
scbColorMode J J

640 mode= l
320 mode= 0

scblnterrupt
Interrupt generated when scan line refreshed = l

No interrupt generated when scan line refreshed = 0

scbFi/1
Fill mode on = l
Fill mode off = O

scbReserved
Reserved for future use; set to 0

colorTable
Color table number: l of 16

Figure 16-22
Scan line control byte

The SCB also controls screen display mode (320 or 640), interrupt mode, and fill
mode.

Interrupt mode: Interrupts can be used to synchronize drawing with vertical
blanking so pixels are not changed as they are being drawn (a pixel is drawn once
every 1/60 of a second). Interrupts can also be used to change the color table before
a screen is completely drawn. This allows a program to show more than 256 colors
on the screen at once but costs the overhead of servicing the interrupt.

Fill mode: When fill mode is active, pixel values of O can be used to fill areas of
color in 320 mode.

•:• Note: Fill mode works only in 320 mode.

A pixel with a numeric value of O serves as a placeholder indicating that the pixel
should be displayed as the same color last displayed, as shown in Figure 16-23.

Scan-line values ! 1 I O I O I O I O I 2 I O I O I O I O I O I l I O I O I O I O I

Colors shown •••••• Black White Black

Figure 16-23
Fill mode example

16-34 Chapter 16: QuickDraw II

Standard color palette in 320 mode

The standard palette (the default color table) for 320 mode is shown in Table 16-4.

Table 16-4
Standard palette In 320 mode

Offset Color Value Offset Color Value

0 Black 000 8 Beige FA9
1 Dark gray 777 9 Yellow FFO
2 Brown 841 10 Green OEO
3 Purple 72C 11 Light blue 4DF
4 Blue OOF 12 Lilac DAF
5 Dark green 080 13 Periwinkle blue 78F
6 Orange F70 14 Light gray CCC
7 Red DOO 15 White FFF

Note: "Offset" means position in the color table and "Value" means master color value, the
hexadecimal value controlling the fundamental red-green-blue intensities.

Dithered colors in 640 mode

Only four colors are available for each pixel in 640 mode. But when small pixels of
different colors are next to each other on the screen, their colors blend. For
example, a black pixel next to a white pixel appears to the eye as a larger gray pixel.
By cleverly choosing the entries in the color table, we can make more colors appear
on the screen. This process is called dithering.

At the same time, to preserve the maximum resolution for displaying text, both black
and white must be available for each pixel. This leaves only two remaining colors per
pixel to choose from, which seems like a severe restriction. But with dithering, you
can have 640-mode resolution for text and still display 16 or more colors if you are
willing to resort to a few simple tricks.

Consider the following byte with four pixels in it:

Each pixel has the value 1, which is an index into the second place in each of the
color table's minipalettes (see Figure 16-21). So pixel l's color is determined by
entry 1 in minipalette 1, pixel 2's color is determined by entry 1 in minipalette 2, and
so on.

Drawing to the screen and elsewhere 16-35

If we use the standard 640-mode color table (shown in Table 16-5), pixels 1 and 3 will
appear blue ($00F) and pixels 2 and 4 will appear red ($DOO). The eye will average
these colors and see violet.

Table 16-5
Standard palette in 640 mode

Offset Color Value Mini palette Offset Color Value Mini palette
offset offset

0 Black 000 0 8 Black 000 0
1 Blue OOF 1 9 Blue OOF 1
2 Yellow FFO 2 10 Yellow FFO 2
3 White FFF 3 11 White FFF 3
4 Black 000 0 12 Black 000 0
5 Red DOO 1 13 Red DOO 1
6 Green OEO 2 14 Green OEO 2
7 White FFF 3 15 White FFF 3

Note: The entries in the minipalettes for the standard 640-mode color table are set up so
black and white appear in the same positions in each palette. This provides pure black and
white at full 640 resolution, allowing crisper text display.

There are 16 different combinations of values a pair of pixels can assume in 640
mode, meaning that you can obtain 16 colors by dithering. To implement it, just
make sure that the pattern you use for drawing or filling consists of a repeating array
of four-bit (two-pixel) values.

16-36 Chapter 16: QuickDraw II

Cursors
A cursor is a small image that appears on the screen and is controlled by a mouse.
(The cursor appears only on the screen, never in an off-screen pixel image.) The
cursor record contains the height and width of the cursor, the cursor image of the
cursor, the mask controlling the appearance of the cursor, and a hot spot defining
where the image of the cursor will be placed by the mouse, as shown in Figure 16-24.

Offset Field

so
cursorHelght

2
cursorWidth

3
4

cursorlmage

cursorMask

hotSpotY

hotSpotX

Figure 16-24
Cursor record

Word-INTEGER; total number of horizontal slices in cursor

Word-INTEGER; number of words w ide in single horizontal slice of cursor

x Bytes-Array of words; cursor image (last word in each slice m ust be 0)

x Bytes-Array of words; cursor mask (last word in each slice must be 0)

Word-INTEGER; Y coordinate of hot spot

Word- INTEGER; X coordinate of hot spot

•:• Note: Because of its variable size, the cursor record is not provided in the APW
interface file .

The cursor appears on the screen as the size defined by the cursorHeight and
cursorWidth fields in the cursor record. The appearance of each pixel is determined
by the corresponding bits in the data mask and by the pixel under the cursor (that is,
by the pixel already on the screen in the same position as this bit of the cursor). The
image on the screen is obtained by ORing the mask with the destination and XORing
that result with the cursor image.

The hot spot aligns a pixel in the cursor image with the mouse location. Thus, a hot
spot of (O,o) is at the top left of the image, and a hot spot of (8,8) would be in the
center of a cursor defined as 16 pixels wide and 16 pixels high.

Drawing to the screen and e lsewhere 16-37

The arrow cursor in 320 mode is defined as shown in the following assembly-language
fragme nt:

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

i ' ll , 4 '

h ' 0000000000000000 '

h ' Of00000000000000'

h'OFFOOOOOOOOOOOOO '

h ' OFFFOOOOOOOOOOOO '

h ' OFFFFOOOOOOOOOOO '

h ' OFFFFFOOOOOOOOOO '

h ' OFFFFFFOOOOOOOOO '

h ' OFFFFFFFOOOOOOOO'

h ' OFFOFFOOOOOOOOOO '

h ' OOOOOFFOOOOOOOOO '

h ' OOOOOOOOOOOOOOOO '

h ' FFOOOOOOOOOOOOOO '

h'FfFOOOOOOOOOOOOO '

h ' FFFFOOOOOOOOOOOO '

h ' FFFFFOOOOOOOOOOO '

h'FFFFFFOOOOOOOOOO '

h ' FFFFFFFOOOOOOOOO '

h ' FFFFFFFFOOOOOOOO '

h ' FFFFFFFFFOOOOOOO '

h ' FFFFFFFFOOOOOOOO '

h ' FFFOFFFFOOOOOOOO '

h ' OOOOOFFFOOOOOOOO '

i ' 1 , 1 '

Eleven slices by 4 words

Cursor image

Mask image

Hot spot

16-38 Chapter 16: QulckDraw II

Using QuickDraw II
This section discusses how the QuickDraw II routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

QuickDraw II depends on the presence of the tool sets shown in Table 16-6 and
requires that at least the indicated version of the tool set be present.

Table 16-6
QuickDraw II -other tool sets required

Tool set
number

$01 #01
$02 #02
$03 #03

Tool set
name

Tool Locator
Memory Manager
Miscellaneous Tool Set

Minimum version
needed

1.0
1.0
1.0

The first QuickDraw II call your application must make is QDStartUp. Conversely,
when you quit your application, you must make the QDShutDown call.

All graphic operations are performed in Gra£Ports. Before a Grafl>ort can be used, it
must be opened with the OpenPort routine. Normally, you don't call OpenPort
yourself-in most cases, your application will draw into a window you've created with
Window Manager routines, and these routines call OpenPort to create the window's
Gra£Port. Similarly, a Grafl>ort's regions can be disposed of by the ClosePort
routine. When you call the Window Manager to close or dispose of a window, it calls
these routines for you.

In an application that uses multiple windows, each is a separate Grafl>ort. If your
application draws into more than one Grafl>ort, you can call SetPort to set the
Gra£Port you want to draw in. At times, you may need to preserve the current
Gra£Port; you can do this by calling GetPort to save the current port, SetPort to set
the port you want to draw in, and then SetPort again when you need to restore the
previous port.

Some toolbox routines return or expect points that are expressed in a common,
global coordinate system; others use local coordinates. For example, when the
Event Manager reports an event, it gives the mouse location in global coordinates,
but your application may need to know where the mouse location is in the window's
local coordinates. The GlobalToLocal routine lets you convert global coordinates to
local coordinates, and the LocalToGlobal routine lets you do the reverse.

The SetOrigin routine will adjust a Gra£Port's local coordinate system. If your
application performs scrolling, you'll use ScrollRect to shift the pixels of the image
and then use SetOrigin to readjust the coordinate system after the shift.

Using QuickDraw II 16-39

You can redefine a GrafPort's clipping region with the SetClip or ClipRect routine.
Just as GetPort and SetPort preserve the current GrafPort, GetClip and SetClip are
useful for saving the GrafPort's clipping region while you temporarily perform other
clipping functions. This is useful, for example, when you want to reset the clipping
region to redraw the newly displayed portion of a document that's been scrolled.

The LineTo routine draws a line from the current pen location to a given point, and
the Line routine draws a line as an offset from the current position. You can set the
pen location with the MoveTo or Move routine; you can set other pen characteristics
with SetPenSize, SetPenMode, and SetPenPat.

In addition to drawing text and lines, you can use QuickDraw II to draw a variety of
shapes. Most of them are defined by a rectangle that encloses the shape. The
following require you to call a series of routines to define them:

• To define a region, call the NewRgn routine to allocate space for it, then call
OpenRgn, and then specify the outline of the region by calling routines that draw
lines and shapes. End the region definition by calling CloseRgn. When you're
completely done with the region, call DisposeRgn to release the memory the
region occupies.

• To define a polygon, call the OpenPoly routine and then form the polygon by
calling procedures that draw lines. Call ClosePoly when you're finished defining
the polygon; call KillPoly when you're completely done with it.

You can perform the following graphic operations on rectangles, rounded-corner
rectangles, ovals, arcs and wedges, regions, and polygons: framing, painting,
erasing, inverting, and filling. These operations are described in the section "Basic
Drawing Functions" in this chapter.

You'll use points, rectangles, and regions not only when drawing with QuickDraw II
but also when using other parts of the toolbox. At times, you may find it useful to
perform calculations on these entities. You can, for example, add and subtract
points and perform a number of calculations on rectangles and regions, such as
offsetting them, rescaling them, calculating their union or intersection, and so on.

•:• Note: When performing a calculation on entities in different GrafPorts, you
need to adjust to a common coordinate system first by calling LocalToG!obal to
convert to global coordinates.

Warning

QuickDraw II doesn't forg ive certain kinds of programming errors. Results will be
unpredictable if you make any QuickDraw II ca lls before inltla llzlng QuickDraw II,
pass any bad handles to QuickDraw II , or make any QuickDraw ca lls w ith a bad
port. Even an error code probably won't be returned If one of these kinds of
errors Is made, and your program may never get control again after one of these
errors. Your application may not fail Immediately; It may work for a while a nd
then later fall for no apparent reason. You must be certain these types of errors
can't occur In your program.

16-40 Chapter 16: QulckDraw II

Fonts and text in QuickDraw II
This section contains a detailed description of the handling of fonts and text in
QuickDraw II, including the definition of an Apple IIGS font.

•:• Note: Most application writers, most of the time, will not need any more
information than is included in the previous sections about text handling in
QuickDraw II. But if you are designing a font, writing a font editor, or using
unusual fonts or an usually large variety of fonts, you'll need the information
presented in this section.

•:• Macintosh programmers: The treatment of text drawing and text measurement
on the Apple IIGS is similar to their treatment on the Macintosh. The IIGS font
definition is similar to that of the Macintosh, and a simple conversion algorithm
allows the IIGS to use any font developed for the Macintosh. Most Macintosh
QuickDraw text calls are duplicated precisely in QuickDraw II. Any differences
are due to one or more of the following:

• Some information has been added to the beginning of the font definition.

• Because Macintosh-like resources do not exist, the IIGS Font Manager performs
differently from the Macintosh Font Manager.

• Some bounding box calls (TextBounds and its siblings) missing from
Macintosh QuickDraw have been added.

• Some calls-DrawCString, CStringWidth, and the like-have been added to
handle the C string data type (a sequence of characters terminated by a O byte).

• The Font Manager is not closely integrated with QuickDraw II. (The interaction
between QuickDraw II and the Font Manager is quite different) .

• QuickDraw II does not scale text. However, the Font Manager can scale fonts as
required.

Font definition

An Apple IIGS font consists of a variable-length header, followed by a Macintosh font
record (this embedded Macintosh font is referred to as the MF part of the IIGS font).
The header is of variable length to allow extra information to be added in the future.

The MF part of a IIGS font is exactly like a Macintosh font, except for one thing-the
high-order and low-order bytes of integers. The Macintosh's 68000 microprocessor
stores integers with the high-order byte first (that is, high-order byte at lower
memory location); the IIGS's 65816 microprocessor stores them with low-order byte
first. In converting a Macintosh font to a IIGS font, the high-order and low-order
bytes of each integer are swapped. This does not apply to the font strike (called
bitlmage in the font definition), which can be used as is.

Apple IIGS font definition

The IIGS font record is shown in Figure 16-25.

Fonts and text In QulckDraw II 16-41

Offset Field

so
offseToMF

1
2
3

family

4
style

5
6 size
7
8

version
9

OA
fbrExtent

OB

oc i

fontType

firstChar

/astChor

widMox

kernMax

nDescent

fRectWidth

fRectHeight

owTLoc

ascent

descent

leading

rowWords

bitfmage

focTabfe

owTabfe

Figure 16-25
Font definition

Word-INTEGER; offset in words to Macintosh font part

Word-INTEGER; font family number

Word-INTEGER; style font was designed with

Word-INTEGER; point size

Word-INTEGER; version number of font definition

Word-INTEGER; font bounds rectangle extent

i x Bytes-Additional fields, if any

Word- INTEGER; font type-ignored on Apple llgs

Word-INTEGER; ASCII code of first defined c haracter

Word-INTEGER; ASCII code of last defined c haracter

Word- INTEGER; maximum character width

Word-INTEGER; maximum leftward kern

Word-INTEGER; negative of descent

Word-INTEGER; width of font rectangle

Word-INTEGER; height of font rectangle (font height)

Word-INTEGER; offset in words to offset/width table

Word-INTEGER; font ascent

Word-INTEGER; font descent

Word-INTEGER; leading

Word-INTEGER; width of font strike in words

x Bytes-Array (l ... rowWords, l ... fRectHeight) of word; font strike

x Bytes-Array (firstChar. .. lastChar + 2) of INTEGER; location table

x Bytes-Array (firstChar ... lastChar + 2) of INTEGER; offset/width table

16-42 Chapter 16: QulckDraw II

Apple IIGS font header fields

Some information about the font is contained in the header. Because fonts designed
at a later time may include additional information that could be utilized by later
versions of QuickDraw II, the header is of variable length. For upward and downward
compatibility of QuickDraw II and IIGS fonts, the following two fields are particularly
useful:

offseToMF: Offset, in words, from this field to the Macintosh font (MP) part
included in the IIGS font (specifically, to the JontType field). The header is therefore
2 x offseToMF bytes long. In the version of QuickDraw II current at the time of this
manual's publication, o.ffseToMF = 6; thus, the header is 12 bytes. Future fonts may
have longer headers that contain font information that can be utilized by future
versions of QuickDraw II. To ensure that these improved fonts can be used by older
versions of QuickDraw II, the ojfseToMF field provides a reliable jump over this
extra font information to the start of the Macintosh part of the font. An older
QuickDraw II will not be able to make use of new header fields added since it was
implemented, but at least it will be able to find the information it can use.

version: Version number of the font definition under which the font was designed.
By checking this field, later versions of QuickDraw II can avoid trying to find and use
information not included in an older font. (Presumably a newer QuickDraw II,
alerted by the version number to the lack of such information, would use some
default or calculated values.) The font definition described in this manual is 1.1
($0101).

Examples of extra information that may be included in later fonts and used by later
versions of QuickDraw II include thickness of underline, slope of italicized letters,
smearing extent of boldface, and the like (on the Macintosh, these are determined
by the Font Manager).

The other header fields are

f amity: Integer identifying the font, regardless of size or style. This can be thought
of as corresponding to the font 's name-Courier or Geneva, for example.

style: Style in which the font was designed. For example, application writers and
graphic designers may design italic or bold fonts for reasons of aesthetics or time
performance. When QuickDraw II is asked to apply a certain style when drawing a
character or string, it first checks this field . If the field indicates that the requested
style is already part of the font, the drawing call will not apply the styling algorithm.
This would, for example, prevent a preitalicized font from being reitalicized.

size: Relative measure of the size of fonts. The measure is analogous to the
Macintosh point size; however, the actual font size is different from the true point size
in a typographic sense.

jbrExtent: Maximum horizontal distance, in pixels, from the character origin to
the far edge of any foreground or background pixel of any character in the font. (See
the section "Font Bounds Rectangle" in this chapter for a more precise definition.)

Fonts and text In QulckDraw II 16-43

Macintosh font part of an Apple IIGS font

A Macintosh font, or in this case the Macintosh font part of a IIGS font, consists of
four sections:

1 . A fixed-length record containing general information, such as font height and
maximum character width.

2. The font strike (named bitlmage in the font record definition), which is a pixel
image containing the image of every character defined in the font, strung one after
another. The pixel image is in a one-bit-per-pixel form. Its width, measured in
words, is given by the rowWords field of the font record; its height, measured in
pixels, is given by fRectHeight.

3. The location table (locTable), an array of integers that indicates for each defined
character where its image in the font strike begins.

4 . The offset/width table (owTable), an array of integers. For each character, the
low-order byte of its entry in the offset/width table (the character offset) indicates
how the character image to be drawn should be positioned with respect to the
current pen location; the high-order byte indicates how far the pen should be
advanced after the character is drawn (character width).

This table is also used to identify characters not defined in a font. An owTable
value of -1 ($FFFF) marks a missing character, which must be handled specially
by the text calls.

A detailed description of the meanings and uses of these various fields and arrays is
given in the sections that follow.

Characters
A character image is a rectangular array of bits, representing pixels. The on, or 1,
bits are called the character foreground pixels.

The number of columns in a character image is called the character image width,
or just the image width. Note that a character can have an image width of 0. For
example, the space has a O image width; its character image consists of no pixels at
all.

The character rectangle is a rectangle that encloses the character image. Its width
is the image width of the character, which may vary from character to character in a
font; its height is the character height, which is the same for all characters in a font.

16-44 Chapter 16: QulckDraw II

Each character has a number associated with it. This number, called the character
width and found in the offset/width table, is the number of pixels the pen position is
to be advanced after the character is drawn. This is different from the image width,
and the distinction between the two is important. For example, the space character
has O image width but does have some positive character width, which determines the
size of the space. Some characters have a nonzero image width but a O character
width; an example of this is an umlaut, which is meant to be typed over a vowel. The
umlaut is drawn first, and then the vowel is drawn with the same pen location.
Characters with O character width are called dead characters.

Also associated with every character in a font are its base line and its character
origin. The base line is a horizontal line that separates the image into two sets of
rows, one set above and one below. (Remember that in QuickDraw II, as in
QuickDraw, horizontal and vertical lines fall between pixels rather than running
through them.) The position of the base line depends on the font's ascent and
descent fields; it is chosen so there are ascent rows above it and descent rows below.
The base line will be in the same horizontal position for every character in the font.
Any foreground pixels of a character image that lie below the base line are
collectively called the character's descender. Most characters don't have a
descender, but in an average font, characters like q and y do.

The ascent line is the horizontal line just above the top row of a character; the
descent line is the line just below the bottom row. These will be the same for every
character in the font.

The character origin of a character is a point on the base line used to position the
character for drawing. This point may be between pixels of the character image, to
the right of them, or to the left. (Here, note that points lie between pixels, not on
them.) Its location relative to the character image can be calculated by the character
offset in the offset/width table, as detailed in later sections of this chapter. When the
character is drawn, it is placed in the destination pixel image so that its character
origin coincides with the current pen location.

For many letters, the character origin is located on the left edge of the character
image so that, when the character is drawn, its leftmost foreground pixels fall just to
the right of the pen. Sometimes the character origin is between pixels of the
character image (or, rarely, entirely to the right of the image). When such a
character is drawn, some of its pixels will fall to the left of the pen position. This is
called kerning to the left. In such a case, the distance, in pixels, from the character
origin to the left edge of the character is called the character's leftward kern.

When character-image pixels fall to the right of the new pen position after the
character is drawn, the character is said to kern to the right. The kernMax field in a
font is concerned only with kerning to the left. Kerning in either direction can cause
letters to overlap each other. See Figures 16-26 and 16-27.

Fonts and text In QulckDraw II 16-45

Character width

Ascent line

Character
rectangle

Font
height

origin

Base line

"-. Next character origin
;......._.;......,L__j__j__ Descent line_)

Image width

Figure 16-26
Character with no kerning

Character width

Ascent line

Character
rectangle

Base line

Font
height

Character
origin

"'- Next character origin
___,;___,;...__;...._L_.:.__ Descent line J

Image width

Figure 16-27
Character kerning left

16-46 Chapter 16: QuickDraw II

Fonts

Font rectangle

Imagine all the defined characters of a font drawn so their character origins
coincide. The result would be a black mess of foreground pixels. The smallest
rectangle completely enclosing this mess is called the font rectangle (see
Figure 16-28).

kernMax

Charac ter
origin

Figure 16-28

n

Font rectangle (simulated)

Ascent line

Ascent

Base line

Descent
Descent line

The fields of the font record that measure aspects of the font rectangle are described
in the following list:

kernMax: Distance, in pixels, from the font rectangle's common character origin
to the left edge of the font rectangle. If any character in the font actually kems to the
left, kernMax is represented as a negative number. If the character origin lies on the
left edge of the font rectangle, kernMax is 0.

Most fonts fall into these two categories. However, in some fonts, the left edge of the
font rectangle is one or more pixels to the right of the character origin. In such a
case, kernMax is assigned a positive value, even though this bends the terminology
a bit; for example, people do not usually say of a character that leaves two columns of
blank pixels between the pen position and its image that it kerns to the left 2 pixels, or
-2 pixels, or anything at all.

fR.ectWidth: Width, in pixels, of the font rectangle. Note that this may be more
than the maximum character image width because the font rectangle's left and right
extremes may come from different characters.

fR.ectHeight: Height, in pixels, of the font rectangle.

Fonts and text In QuickDraw II 16-47

ascent: Number of pixel rows above the common base line in the font rectangle.

descent: Number of pixel rows below the base line in the font rectangle. Note that
jRectHetght = ascent + descent.

nDescent: Negative of descent.

•:• Note: For typical fonts-those in which the font rectangle at least touches its
character origin-ascent and descent will be non-negative, and kernMax and
nDescent will be nonpositive. However, fonts can be designed without these
restrictions.

fontType: QuickDraw II ignores this field.

ftrstChar: ASCII code of the first defined character in the font.

lastChar: ASCII code of the last defined character of the font.

wtdMax: Maximum character width (pen displacement) of any character in the font,
measured in pixels.

owTLoc: Offset, in words, from this field to the font offset/width table (owTable).
By adding 2 x owTLoc to the memory address of this field, you get a pointer to the
owTable. There is no corresponding field for the location table in the font record;
to get a pointer to the locTable, you must subtract 2 x (lastChar - firstChar + 3) from
the owTable pointer.

leading: Recommended number of blank pixel rows between the descent row of one
line of text and the ascent row of the next. Applications may use this or not, as they
please.

rowWords: Width of the font strike, in words. This is discussed further in the next
section, "Font Strike."

Font strike

The font strike (called bttlmage in the font definition) is a one-bit-per-pixel pixel
image consisting of the character images of every defined character in the font,
placed sequentially in order of increasing ASCII code from .ftrstCharto lastChar + 1.
The character images in the font strike abut each other; no blank columns are left
between them; see Figure 16-29.

Figure 16-29
Part of a font strike

16-48 Chapter 16: QulckDraw II

Because all the characters of a font have the same height, the font strike is just one
long pixel image with no jumps or undefined stretches and with a height of
jRectHeight. The strike is padded on the right, if necessary, with enough extra pixels
on each row to make the row width a multiple of 16---that is, to make each row an
integral number of words. This width, measured in words, is found in the row Words
field of the font record.

Defined versus undefined characters

Not every possible ASCII code must have a character image in the font strike. The
font may leave some characters undefined; these are called missing characters.
Every character with a code less than firstChar or greater than lastChar + l is
undefined. There may be other undefined characters as well. The offset/width table
(owTable) has an entry for every code from firstChar to lastChar + 2, inclusive. If a
character's entry in the offset/width table is -1 ($FFFF), the character is undefined or
missing .

Character code lastChar + l is a special case. Immediately following lastChar in the
font strike is a character (known as the missing symbol) that is to be used in place of
any missing character. This character must be present in the font strike. It has
entries in the locTable and the owTable, and its entry in the owTable must not be -1.
For all purposes, the missing symbol is a defined character with ASCII code
lastChar + 1. In many fonts, the missing symbol is a hollow rectangle; in the current
system font, it is a white-on-black question mark.

Whenever the QuickDraw II text-handling routines encounter a missing character­
less thanfirstChar, greater than lastChar+ 1, or having an owTable entry of - 1-the
routines immediately substitute the missing symbol for the character, using the
missing symbol's character image, locTable entry, and owTable entry wherever
needed.

Location table

The location table (locTable) is an array of integers with an entry for each character
code from firstChar to lastChar + 2. It is used to find character images in the font
strike. For each defined character, the locTable entry gives the distance, in pixels,
from the beginning of the font strike to the beginning of the character's image in the
font strike ("beginning," here, means left edge). This indicates where the character
image starts. To see where it ends, take the next locTable entry (the beginning of the
next character image) and subtract 1. Because the character images abut each other,
this will give you the precise limits of the character image. The image width of a
defined character with code C is locTable[C+ 1] - locTable[Cl. This may be 0.

Fonts and text In QuickDraw II 16-49

For this scheme to work, two conditions must hold:

1 . The locTable entry for an undefined character must be the same as the entry for
the next defined character. This prevents undefined characters, which have no
image in the strike, from interfering with the hunt for images of defined
characters .

Note that there always will be a next defined character because the missing
symbol, which serves as a defined character, is tacked on at the end of the strike.

2 . To get the character image for the missing symbol, there has to be an entry in the
locTable following the missing symbol entry. For this reason
locTable[lastChar + 2] is included and is set equal to the length of the font strike in
pixels, ignoring the padding that is added to the font strike to align it to word
boundaries.

Offset/width table

The offset/width table (owTable) is an array of integers with an entry for each
character code fromfirstCharto lastChar+ 2. If a character's entry is - 1, the
character. is undefined (missing). Otherwise the entry's low-order and high-order
bytes are the character width and character offset, respectively. Both are interpreted
as numbers in the range 0- 254 (255 is ruled out to avoid the case where both bytes are
255, giving an entry of - 1, which would mark a missing character).

The character offset is used to calculate the position of character origin relative to the
image in the following way: The offset is added to the font's kernMax. The result is
the (horizontal) distance, in pixels, from the character origin to the left edge of the
image. If the result is negative, then the origin is to the right of the image's left edge
(the character kerns leftward). If the result is positive, the origin is to the left of the
image's left edge. (A result of O means that the character origin sits on the left edge of
the image). Because we already know that the character origin must lie on the base
line (whose position is determined from ascent and descent), this precisely locates
the origin.

16-50 Chapter 16: QulckDraw II

If you draw the font rectangle and look at a particular character's character rectangle
within it, the character offset is seen to be the offset, in pixels, between the left edge
of the font rectangle and the left edge of the character rectangle. See Figure 16-30.

Character
rectangle

Character
origin y

Character
offset

Figure 16-30
Charac ter rectangle In font rectangle

The low-order byte of the owTable entry gives the character width, which is the
distance, in pixels, the pen should be advanced to the right after the character is
drawn. In applications, this distance can be affected by a number of calls,
particularly SetCharEx:tra and SetSpaceEx:tra. There is, however, a general rule in
QuickDraw II: any character whose character width (taken unmodified from the
owTable) is O will not have that width changed by chExtra, spE:xtra, style
modifications, nonproportionality, or any other effect. We assume that characters
are given O width only for some very good reason.

Warning

Any modification, or any combination of modifications, that results In a character
width of less than O or greater than 255 will wreak havoc with the drawing
routines and is not allowed. This Includes chExtra, spExtra, and style
modifications, among others. QulckDraw II does not check for this condition.
That Is up to you.

The lastChar + 2 entry of the owTable is set to -1.

Fonts and text In QuickDraw II 16-51

Character backgrounds
A character's foreground consists of all the on pixels (1 bits) in its image. The off
pixels (0 bits) are part of the background. In QuickDraw II, the background is extended
on the left to include any pixels that are to the left of the image's left edge but to the
right of the character origin (and between the ascent and descent lines). On the right
side, the background is extended to include any pixels (between ascent and descent)
that are to the right of the image's right edge but to the left of the character origin of the
next character (that is, to the left of the new pen position). Any new pixels added in
this way are also considered background pixels. In other words, the foreground of a
character consists of all 1 bits in its character image. The background consists of all 0
bits in the image plus all nonforeground pixels that are to the right of the character
origin, to the left of the subsequent character origin (character origin + character
width), above the descent line, and below the ascent line. In some cases, no extending
is needed. If the character kerns to the left, no left extension is necessary; if it kerns to
the right, no right extension is needed.

This is a very natural definition of background. If you're going to draw a green
character that doesn't stretch entirely from the old pen position to the new and you
have a red background, the red background will usually extend a little to the left
and/or ·right of the character's image. This is what people generally want for a
background. But in addition to this, when characters do kern, the background
extends as far left or right as the kerning, so the kerned part of the character doesn't
jut out past the character's background.

This brings us to the definition of the character bounds rectangle (Figure 16-31).
It is the smallest rectangle enclosing all the foreground and background pixels of a
character. It may be somewhat larger than the character rectangle, which encloses
the image, because the bounds rectangle takes into account the character width (pen
positions) as well as the image width. The width of a character's bounds rectangle is
called the character bounds width. QuickDraw II includes calls for measuring
character bounds rectangles and corresponding routines for strings, C strings, and text.

Character bounds width

Character
origin

Figure 16-31
Character bounds rectangle

Ascent line

...... _ Character bounds

...... rectangle
_____ Character

rectangle

Base line

.. '-- Next character origin

Descent line

-16-52 Chapter 16: QuickDraw II

Font bounds rectangle
To get some new, useful measures for the width of a font, we define the font bounds
rectangle. Imagine that, for all of a font's characters, the characters' bounds
rectangles were drawn so all the character origins coincided. The resulting rectangle
(more precisely, the rectangle that is the union of all these rectangles) is called the
font bounds rectangle. This rectangle, illustrated in Figure 16-32, includes all
pixels, foreground and background, of every character in the font. (Consequently, it
may be bigger than the font rectangle, which is only guaranteed to include all the
foreground pixels.)

We define jbrWidth to be the width of the font bounds rectangle, jbrRightF.xtent to
be the distance from the common character origin to the right edge of the font
bounds rectangle, and jbrLeflF.xtent to be the distance from the origin to the left
edge (all distances measured in pixels and as positive numbers) . Finally, we define
jbrExtent to be the maximum of jbrLeflExtent and jbrRightExtent.

kernMax widMax

Ascent line

Font Font
bounds rectangle Ascent

rectangle

Base line

Character Descent
origin Descent line

fbrleftExtent fbrRightExtent

Figure 16-32
Font bounds rectangle

The jbrF.xtent value is the farthest possible horizontal distance from the pen location
to the far edge of any pixel that can be altered by drawing any character in the font.
In many ways, this is a more precise measure of the width of a font than widMa.x or
fRectWtdth .

It would seem from Figure 16-32 thatjbrLeflExtent and kernMa.x are the same, or
rather that jbrLeflExtent = -kernMax. This is true if, and only if, kernMa.x is O or
negative; if kernMa.x is positive (that is, if every character image starts at least 1 pixel
to the right of the character origin) then jbrLeflF.xtent is 0. This makes fbrLeflExtent
easy to calculate. It would also seem as if fbrRightF.xtent is the same as widMa.x, but
if any character kerns to the right beyond the reach of widMa.x, jbrRightExtent will
be bigger than widMa.x.

Fonts and text In QuickDraw II 16-53

•!• Macintosh programmers: The jbrExtent field is needed for safe handling of the
text buffer. It is not included in the Macintosh font definition. If you are
converting a Macintosh font to the JIGS, jbrExtent can be calculated by using the
CharBounds call on character codes 0-255 and doing some simple arithmetic
(the CharBounds call itself doesn't need a valid value for jbrlixtent, so it can be
called for the calculation). This has to be done only once for each font.

Drawing and the text buffer

Whenever a character or string is to be drawn, it is first drawn into the text buffer, a
one-bit-per-pixel pixel image reserved for the private use of the QuickDraw II text­
drawing calls. For strings, only those characters that have a chance of making it into
the destination pixel image are actually drawn; the others, both to the left and to the
right, contribute only to the cumulative pen displacement. Thus, there is no reason
for an application to try to clip characters out of long strings unless it has a very fast
way of doing so.

The text buffer is empty at the beginning of each drawing call. Successive characters
of a string are drawn into it, with an internal text buffer pen incremented by the
character width each time. Regardless of the ultimate text mode (t:xMode in the
GrafFort), characters are drawn into the text buffer in OR mode. Thus, characters
that kern into each other do not interfere destructively. (For this reason, with certain
text modes, such as modeForeXor, the results you get if you put up a string one
character at a time with DrawChar can be different from those you get if you put up
the whole string with DrawString. In the case of DrawChar, overlapping characters
may cancel out some pixels.)

Once the character or string is safely in the text buffer, any requested style
modifications (underlining, balding, and the like) are applied to it. Then the text
buffer is transferred to the destination. Individual bits are replaced with two or four
bits, depending on the chunkiness of the destination; the bit patterns used are the
Grafport's fgColor for the 1 (foreground) bits and bgColor for the O (background)
bits. During the transfer, the text image is clipped to the current clipping region.
The surviving pixels are combined with the destination's pixels, according to
whatever text mode is in use. If and when the result makes it to the screen, the bit
patterns will be translated into colored pixels according to the current color map(s).

16-54 Chapter 16: QulckDraw 11

Controlling text display

Various QuickDraw II calls affect text display. Generally, the calls set some field of
the current GrafPort that is used in the text-drawing process. Matching the calls that
set the fields are corresponding calls that return the value of the fields.

SetForeColor, GetForeColor, SetBackColor, GetBackColor, SetTextMode, and
GetTextMode deal with the GrafPort fields fgColor, bgColor, and t:xMode, -whose
effects were described earlier. The other display control calls deal with character
spacing, style modifications, boldfacing, underlining, and font flag options, as
described in the following sections.

Character spacing calls

SetCharExtra, GetCharExtra, SetSpaceExtra, GetSpaceExtra: These calls set
and/or get the chExtra and spExtra fields in the GrafPort; those fields can alter the
character widths (pen displacement) when characters are drawn. Each is a fixed
number with a one-word integer part and a one-word fractional part.

The chExtra field was included because some fonts that look fine in 320 mode appear
too closely spaced in 640 mode. Putting an extra pixel between letters seems to help
in these cases.

The chExtra value is added to the character width of each character, except a dead
character, as it is drawn. The chExtra value is not added to dead characters, which
have a character width of 0.

Adding chExtra to a character width will give us character origin positions that have a
fractional part. During any text-drawing call, QuickDraw II keeps track of this
fractional part and, when drawing a character, rounds its character-origin position
to the nearest integer (1/ 2- that is, $8000- is rounded up). The fractional part is not
remembered after the call has been completed.

Commonly used to help in justifying text, spExtra works the same way as chExtra
except that it is only applied to the space character. Note that here "space character"
means ASCII $20 and nothing else. In particular, the nonbreaking space included in
many fonts is unaffected by the spExtra field. The spExtra value is cumulative with
chExtra.

These values are set by the QuickDraw II routines SetCharExtra and SetSpaceExtra
(and can be fetched by GetCharExtra and GetSpaceExtra). In theory, the application
can set chExtra and spExtra to any fixed value, even a negative one. However, any
values that cause a character to have a character width of less than O or greater than
255 pixels will cause no end of trouble.

Fonts and text In QulckDraw II 16-55

Style modification calls

SetTextFace, GeffextFace: These calls set and get the txFace field of the
GrafPort, which determines the style to be applied to the text. At the time of
publication, the following bits were defined:

Bit O Bold
Bit 1 Italic-available only if QuickDraw II Auxiliary is loaded and started up
Bit 2 Underline
Bit 3 Outline-available only if QuickDraw II Auxiliary is loaded and started up
Bit 4 Shadow-available only if QuickDraw II Auxiliary is loaded and started up

These styles may affect the character width (pen displacement), image width, ascent,
and descent associated with a character or string. For example, boldfacing spaces
characters farther apart and makes the characters thicker. These changes are
reflected in the results returned by the width routines (CharWidth, StringWidth, and
so on), the bounds routines (CharBounds, StringBounds, and so on), and the
GetFontlnfo routine.

Font flags option calls

SetFontFlags, GetFontFlags: The JontF/ags field of the GrafPort is set by
SetFontFlags and fetched by GetFontFlags. At the time of publication, only the last
three bits (bits 2-0) of this word are defined; bits 15-3 are reserved and should be set
to 0.

Bit O: If bit O is set, the font is used as a nonproportional font; every character,
except characters with character width 0, is given the same character width, namely
wid.Max (the maximum character width field from the font definition).

When nonproportionality is in effect, chF-xtra, spE.xtra, style modifications, and so
forth, are applied to the character width after it has been set to wid.Max.

Bit 1: As of Version 2.0, if bit 1 is set and bit O is not, every character in the font is
given the same character width, just as occurs with the nonproportionality setting.

However, in this case, the width used is the character width of the font's digit O (ASCII
$30).

This feature makes it easier to line up columns of figures. It makes all digits, spaces,
periods, and the like, the same width. "Width," here, means character width; that is,
the pen displacement after the character is drawn. (The image width of the
characters remains unchanged.) Of course, standard nonproportionality would also
make everything line up, but in most fonts, wid.Max is a good deal more than the
width of a digit, which causes numbers to end up spaced too far apart.

Because the width used in numeric spacing is usually less than wid.Max, some
characters-for instance, W's and M's--end up overlapping other characters.
Consequently, numeric spacing is useful with the characters most commonly used
with numbers-space, period, and so on-but is not appropriate for general text.

16-56 Chapter 16: QulckDraw II

If you want absolute control over the width of characters, you can use numeric
spacing or the standard nonproportionality and then adjust it to your tastes using the
SetCharExtra routine.

When numeric spacing is in effect, chBctra, spExtra, style modifications, and the
like, are applied to the character width after it has been set to the width of the digit 0.

Bits 1 and O should not both be set to 1.

Bit 2: Bit 2 controls how the foreground and background colors in the GrafPort are
applied to text when it is drawn. If bit 2 is 0, the foreground and background colors
are treated as pixel values (two- or four-bit numbers depending upon the GrafPort's
SCB), with all other bits in the word ignored. Each foreground pixel is given the
value of the foreground color value, and each background pixel is given the value of
the background color value. For example, in 640 mode with a foreground color word
of 0110011001100110 and bit 2 set to 0, each pixel will have a value of 10.

If bit 2 is set to 1, the foreground and background colors are treated as a word's worth
of pixel values. This feature is useful when you are trying to draw text in 640 mode
using dithered colors. Each foreground pixel in a destination word is given the value
of the corresponding pixel in the foreground color word. Each background pixel in a
destination word is given the value of the corresponding pixel in the background
color word. For example, in 640 mode with a foreground color word of
0110011001100110 and bit 2 set to 1, odd-numbered pixels will have a value of 10 and
even-numbered pixels will have a value of 01.

Using the QuickDraw II font calls

Text drawing calls

DrawChar, DrawText, DrawString, DrawCString: These calls are used when the
specified character or string of characters is drawn, using all the current
information-font, style, mode, and so forth . The current pen position is used as
the character origin of the first character. The pen is advanced by the sum of the
character widths. Note that, although the text image is clipped to the current clip
region, the pen is not clipped in any way; the new pen position can be outside the
current GrafPort bounds.

Warning

Near the edges of its drawing space (± l 6K,± 16K), QuickDraw ii is unreliable; this
applies to text drawing as well as to any other kind. Calls that would draw
outside the space can cause catastrophic results.

Fonts and text In QuickDraw II 16-57

Text width calls

CharWidth, TextWidth, StringWidth, CStringWidth: These calls return the total
pen displacement that would result if the character or sequence of characters were to
be drawn. Nothing is actually drawn, however. The width calls take into account
current styles, chFxtra, spFxtra, font flags, and the like. But they do not take kerning
(which is independent of pen displacement) into account; that's a job for the text
bounds calls. Note that the width calls only return a pen displacement, not a new pen
location. They make no use of the current pen location, and they don't change it.

Text bounds calls

CharBounds, TextBounds, StringBounds, CStringBounds: These calls return
the smallest rectangle that would enclose all the foreground and background pixels of
the character or string (or text block or C string) of characters if they were to be
drawn, starting at the current pen location. The rectangle is given in the local
coordinates of the current GrafPort.

Unlike the text width calls, these calls take kerning, as well as pen movement, into
account. The bounds rectangle extends to the left as far as the starting pen position
or the leftmost kerning pixel (if any) of the text image, whichever is farther to the left.
Similarly, it extends as far right as the new pen position or the rightmost kerning
pixel, whichever is farther to the right. But at the least, the bounds rectangle is
reliable; any pixel that might be changed by a text-drawing call is inside the
corresponding bounds rectangle.

The rectangle extends up (from the current pen location) to the ascent line and down
to the descent line. It is not clipped to any clipping region. It takes into account
style modifications, chExtra, spExtra, and so forth . Note that the bounds rectangle is
not actually drawn by these calls; its coordinates are simply returned to the
application.

Some strings (or text or C strings), or possibly even some characters, may have no
foreground or background pixels. Such a character would have to have O image width
and O character width-a space with no length. A string may have O length (no
characters) or be composed entirely of the spaceless spaces just described. In these
cases, the text bounds calls return a degenerate rectangle; that is, one whose right
and left edges are the same (namely, the current pen location's X coordinate). The
upper and lower edges of the rectangle will be the ascent and descent lines (relative to
the pen's Y coordinate), as usual.

Text buffer management calls

SetBufDims, ForceBufDims, SaveBufDims, RestoreBufDims: These calls
affect the size of the text buffer and the way it is used.

•!• Note: If you are using the Font Manager, it takes care of all this text buffer
management for you.

16-58 Chapter 16: QulckDraw II

Important
These calls affect the QuickDraw II clip buffer as well as the text buffer!

When a string (or text block or C string) is to be drawn into a pixel image, it is first
drawn into the text buffer. Characters of the string that fall far outside the
destination's left or right boundaries are not actually drawn into the text buffer; only
their character widths are used-to determine where the string actually enters the
destination (on the right) and/ or what the final pen location should be (on the left).

For the text-drawing calls to handle this safely and efficiently, QuickDraw II must have
certain information about the largest pixel image sizes and character sizes it will have
to deal with. For one thing, the text buffer must be at least as wide (in pixels) as the
widest destination pixel image that may be used (actually, it must be a little wider to
avoid disaster when drawing characters that fall partly in and partly out of the
destination), and it has to be as high as the highest font. For another thing, to decide
if a pen location is so far outside the destination that a character drawn with that
origin can't possibly impinge on the destination, QuickDraw II needs to know the
width of the widest possible character. "Widest," here, includes not only image
width and character width, but also any elongations due to chExtra, spExtra, style
modifications, and so forth. Any pixel that can be touched by a character's
foreground or background must be considered.

This is what jbrExtent was created for. It describes how far away from the current pen
location any pixel that can be altered can be. But jbrExtent depends only on the
font and does not take into account style modifications and the like. This is why we
have two calls: SetBufDims, which provides generous defaults for any character
elongations, and ForceBufDims, which puts things more under the application's
control.

When QDStartUp is called, it creates a text buffer that is twice as high as the system
font, wide enough to support the maxWidth parameter of QDStartUp, and capable
of handling characters twice as wide as the system font characters ("wide" in the sense
of jbrExtent) . It also permits the use, with any font, of any chExtra ~ jbrExtent (of
that font); spExtra ~ jbrExtent; and it allocates up to 36 extra pixels per character to
accomodate style modifications (bolding, for example, adds 1 pixel to a character,
and italicizing a large font can stretch its horizontal extent significantly). If your
application is going to deal only with fonts and text display parameters that fall within
those limits, you can trust to the defaults and never call SetBufDims or
ForceBufDims.

The SetBufDims routine takes three parameters:

maxWidth
maxFontHeight
maxFBRExtent

INTEGER
INTEGER
INTEGER

Fonts and text In QuickDraw II 16-59

The ma.xWidth value is the width in bytes (not pixels) of the largest pixel image the
application will draw into (a value of O indicates screen width). It will override the
value supplied to QDStartUp. The maxFontHeight value is the height, in pixels, of
the tallest font the application will have to work with. The maxFBRExtent value is the
jbrExtent of the widest (that is, greatest jbrExtent) font the application will work with.
The call resizes the clip buffer and the text buffer to accommodate these sizes.

In addition, SetBufDims pads the text buffer to allow for (1) values of chExtra and
spExtra ~ the jbrExtent of the font in use at any given time and (2) an extra 36 pixels
of style modification added to the width of any character.

SetBufDims's three parameters are used to size QuickDraw H's internal buffers. When
it's time to actually draw a string, and QuickDraw II must decide which characters
might make it into the destination, it uses the jbrExtent of the current font (which
may be way smaller than maxFBRExtent), the current values of spExtra, chExtra,
txFace, and so on, and for a destination pixel image width, the width of the active
portion of the current GrafPort's pixel image (its minRect, to be specific).
Therefore, large values for SetBufDims's parameters may soak up some memory for
the text buffer size but will not cost much in time lost drawing into the text buffer
characters that will never make it into the destination. This also means that, once the
text buffer is sized, the maxFBRE:xtent parameter can be forgotten. (This is not true
for ForceBufDims.)

ForceBufDims takes the same parameters as SetBufDims and performs the same
functions; however, it does not pad the text buffer at all. Any extra pixels that might
be added to a character bounds width due to chExtra, spExtra, style modifications,
or whatever, should be added into the maxFBRExtent parameter by the application
making the call.

ForceBufDims, like SetBufDims, sizes the buffer(s) on the basis of its parameters,
and when a string is actually drawn, only the width of the current GrafPort's pixel
image is considered, not all of maxWidth. But, unlike SetBufDims, ForceBufDims
forces QuickDraw II to use the maxFBRExtent parameter to decide which characters
are in and which out, rather than trying to calculate a current jbrExtent value.
ForceBufDims is for those times when you're going to do something so unusual that
QuickDraw II won't be able to anticipate your actions (such as using very large
chExtra or spExtra values). Consequently, when ForceBufDims is called, its
maxFBRE:xtent value must be remembered for subsequent drawing calls. In the
SaveBufDims and RestoreBufDims, there is an asymmetry in the parameters handed
back, depending on whether the text buffer was originally set (maxFBRE:xtent no
longer needed) or forced (maxFBRE:xtent must be remembered). Precise
calculations of maxFBRExtent for the ForceBufDims call are not necessary; upper
limits will do.

16-60 Chapter 16: QulckDraw II

You can of course call SetBufDims or ForceBufDirns every time you change fonts or
even every time you call SetCharExtra and SetTextFace. This is not recommended,
however, because sizing (and clearing) buffers can be quite time-consuming. The
routines should probably be called only once (if at all), with the maximum realistic
values for each of the parameters, and never again.

InflateTextBuffer takes two parameters: newWidth, a font width (that is, fbrFxtent in
pixels); and newHeight, a font height (in pixels). It then calculates whether the
current dimensions of the text buffer are large enough to accommodate a font with
that width and height and, if they are not, the routine enlarges the text buffer so that it
can handle fonts of that size. The routine will never shrink the size of the text buffer.
InflateTextBuffer always pads the value of newWidth to allow for style modifications
and for reasonable values of chFxtra and spFxtra.

•!• Note: If the current text buffer size was set by a SetBufDims call, then when
InflateTextBuffer enlarges the text buffer, it makes an internal call to SetBufDirns,
so the new width is also considered a "set" value. However, if the text buffer
currently has a "forced" width, as set by ForceBufDims, InflateTextBuffer will
enlarge the buffer by first padding the newWidth value and then calling
ForceBufDims with this padded value as the "forced" font width.

SaveBufDirns and RestoreBufDirns are included for orderly context-switching
between subprograms. SaveBufDirns saves the state of the clip buffer and text buffer
sizes in the form of an eight-byte record:

maxWidth
textBujHetght
textBufferWords
font Width

INTEGER
INTEGER
INTEGER
INTEGER

The ma.xWidth value is the current value of the application-set maximum pixel image
width in bytes. The textBujHeight value is the current text buffer height in pixels, and
textBufjerWords is the current width of the text buffer in words. The JontWidth value
serves two purposes: if it is 0, it means the buffer was set up with a call to SetBufDims;
if it is nonzero, the buffer was set up with a call to ForceBufDims, and the value of
JontWidth is equal to the ma.xFBRExtent parameter used in that call.

RestoreBufDirns restores the buffer dimensions on the basis of the record it is given.

Regardless of which call- QDStartUp, SetBufDirns, ForceBufDims, or
RestoreBufDims-sizes or resizes the text buffer, the application is not responsible
for clearing it. The calls take care of clearing the text buffer automatically. Also note
that SaveBufDims and RestoreBufDims do not save and restore the contents of the
text buffer; they restore only the parameters related to its size.

Fonts and text In QulckDraw II 16-61

Font information calls

GetFontlnfo, GetFontGlobals, GetFGSize, GetFontLore: These calls are
included for gathering information on the current font. GetFontlnfo returns
information in the following font info record:

ascent
descent
widMax
leading

INTEGER
INTEGER
INTEGER
INTEGER

These values have been modified, if necessary, to reflect style modifications
currently in effect.

GetFontGlobals returns a variable-length font globals record as follows :

fgFontID INTEGER
Jg Style INTEGER
fgSize INTEGER
jg Version INTEGER
fgWidMax INTEGER
fgFbrExtent INTEGER
(Additional fields may be present at the end of the record.)

The fgWidMax value is taken from the embedded Macintosh font; all the others are
from the Apple IIGS header. They are taken directly from the font and are not
modified, regardless of any style modifications in effect.

In the future, more information will probably be added to the font globals record.
The GetFGSize routine exists to warn the application about the added information.
The routine returns the length in bytes of the font globals record. Future versions of
QuickDraw II may add extra information at the ends of their font globals records, but
for compatibility, those versions will maintain the documented fields and ordering
of earlier versions.

GetFontLore returns the same information as GetFontGlobals in the same order.
However, the application can use GetFontLore and specify the maximum number of
bytes the application will accept; GetFontLore returns no more than that many bytes
in the form of an initial segment of the font globals record. Thus, the application
can avoid calling the Memory Manager to size a buffer on the basis of GetFGSize;
instead, it can just receive the font globals information that the application knows
how to handle. The GetFontLore routine is recommended; GetFontGlobals is
maintained for compatibility reasons.

16-62 Chapter 16: QulckDraw II

$0104

Parameters

Errors

C

QDBootlnit
Initializes QuickDraw II; called only by the Tool Locator.

Warning

An application must never make this call.

This routine puts the address of the cursor update routine into the bank $El vectors.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

QuickDraw II housekeeping routines 16-63

$0204

Parameters

QDStartUp
Starts up QuickDraw II for use by an application.

Important
Your application must make this call before It makes any other QulckDraw II
calls.

The routine sets the current port to the standard port and clears the screen.

QuickDraw II uses three consecutive pages of bank zero for its direct page space,
starting at dPageAddr. The maxWidth parameter specifies the size in bytes of the
largest pixel map that will be drawn to (a value of O indicates screen width). Knowing
this maxWidth allows QuickDraw II to allocate certain buffers only once and keep
them throughout the life of the application.

Stack before call

previous contents

dPageAddr

masterSCB

maxWidth

userID

Stack after call

Word-Bank $0 starting address for 3 pages of direct-page space

Word-Master SCB for Super Hi-Res graphics

Word-INTEGER; size in bytes of largest pixel map, 0 for screen width

Word-User ID of application

f-SP

previous contents I
-------- f- SP

Errors $0401 alreadyinitialized

$0410 screenReserved

Memory Manager errors

16-64 QulckDraw II housekeeping routines

Attempt made to start up QuickDraw II a
second time without first shutting it down

Memory Manager reported screen memory
(bank $El from $2000 to $9FFF) is already
owned by someone else

Returned unchanged

C extern pascal void QOStartUp (dPageAddr,masterSCB , maxWidth , userID)

Word dPageAddr ;

Word masterSCB ;

Word maxWidth;

Word user ID;

QuickDraw II housekeeping routines 16-65

$0304

Parameters

Errors

C

$0404

Parameters

QDShutDown
Shuts down QuickDraw II when an application quits.

Important
If your application has started up QulckDraw II, the application must make this
call before It quits.

The stack is not affected by this call. There are no input or output parameters.

Memory Manager errors Returned unchanged

ext ern pascal void QDShutDown()

QDVersion
Returns the version number of QuickDraw II.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word- Space for result

~SP

Word- Version number of QuickDraw II

~SP

C extern pas cal Wo rd QDVer s ion ()

16-66 QulckDraw II housekeeping routines

$0504 QDReset
Resets QuickDraw II; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$0604 QDStatus
Indicates whether QuickDraw II is active.

Parameters

Stack before call

previous contents

wordspace

Stack ofter call

previous contents

activeFlag

Errors None

Word- Space for result

~SP

Word-BOOLEAN; TRUE if QuickDraw II active, FALSE if inactive

~SP

C e xtern pascal Boolean QD St atus()

QulckDraw II housekeeping routines 16-67

$8004

Parameters

AddPt
Adds two specified points together and leaves the result in the destination point. For
example, two source points of (10,20) and (1,2) result in a destination point of
(11,22) .

Stack before call

previous contents

srcPtPtr

destPtPtr

Stack after call

Long-POINTER to POINT

Long-POINTER to POINT used as source and destination

~SP

previous contents I
-------- ~SP

Errors

C

None

extern pascal void AddPt (srcPtPtr , destPtPtr)

Point *srcPtPtr ;

Point *destPtPtr ;

16-68 QuickDraw II routines

$AC04 CharBounds
Places the character bounds rectangle of a specified character into a specified buffer.

Parameters

Stack before call

previous contents

theChar

resultPtr

Stack after call

Word-Character to use to set bounds

Long-POINTER to space for rectangle

f- SP

previous contents I
-------- f- SP

Errors None

C ext ern pascal void CharBounds (theChar , resultPtr)

Word theChar;

Rect *resultPtr;

QulckDraw II routines 16-69

$A804 CharWidth
Returns the character width, in pixels (pen displacement), of a specified character.

Parameters

Stack before call

previous contents

wordspace

theChar

Stack after call

previous contents

char Width

Errors None

Word-Space for result

Word-Character to be measured

f-SP

Word-INTEGER; width of character in pixels

f-SP

C extern pascal Integer CharWidth (theChar)

Word theChar ;

16-70 QuickDraw II routines

$1504

Parameters

ClearScreen
Sets the words in screen memory to a specified value. The value is stuffed into each
word of screen memory. The colorWord value represents a group of adjacent pixels
(4 in 320 mode; 8 in 640 mode). See the section "Drawing in Color" in this chapter.
ClearScreen is usually used to clear the screen to a solid color.

Stack before call

previous contents

color Word Word-Color as offset into current color table

~ SP

Stack after call

previous contents I
---------~SP

Errors None

C extern pascal void ClearScreen (colorWord)

Word colorWord ;

QuickDraw II routines 16-71

$2604

Parameters

ClipRect
Changes the clipping region of the current GrafPort to a rectangle that is equivalent to
a specified rectangle.

Stack before call

previous contents

rectPtr Long- POINTER to RECT defining rectangle

Stack after call

previous contents I
-------- ~ SP

Errors

C

$C204

Parameters

Errors

Memory Manager errors Returned unchanged

extern pascal void ClipRect(rectPtr)

Rect *rectPtr;

Close Poly
Completes the polygon definition process started with an OpenPoly call.

The stack is not affected by this call. There are no input or output parameters.

$0441 PolyNotOpen

Memory Manager errors

No polygon open in current GrafPort

Returned unchanged

C extern pascal void ClosePoly()

16-72 QulckDraw II routines

$1A04 Close Port
Deallocates the clipping and visible regions in a port. If the application disposes of
the memory containing the port without first calling ClosePort, the memory
associated with the handles is lost and cannot be reclaimed.

Warning

Never close the current port.

Parameters

Stack before call

previous contents

portPtr

Stack after call

Long-POINTER to port

~SP

previous contents I
------ --~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void ClosePort (po r t Ptr)

GrafPortPtr portPtr ;

QuickDraw II routines 16-73

$6E04 CloseRgn
Completes the region-definition process started by an OpenRgn call. The region
must have already been created by a NewRgn call, which supplies rgnHandle.

Parameters

Stack before call

prevtous contents

rgnHandle Long-HANDLE to region being set to a collection of points

f-SP

Stack after call

previous contents '
-------- f- SP

Errors $0431 rgnNotOpen

Memory Manager errors

No region open in current GrafPort

Returned unchanged

C e xtern pascal void CloseRgn(rgnHa ndle)

RgnHandle rgnHandle ;

16-74 QulckDraw II routines

$6904 CopyRgn
Copies the region definition from one region to another. The srcRgnHandle and
destRgnHandle must have already been created; in particular, this routine does not
allocate the destRgnHandle.

Parameters

Stack before call

previous contents

srcRgnHandle Long-HANDLE to source region

-- destRgnHandle Long-HANDLE to destination region

Stack after call

previous contents I
-------- ~ SP

Errors Memory Manager errors Returned unchanged

C extern pascal void CopyRgn (srcRgnHandle , destRgnHan d l e)

RgnHandle

RgnHandle

srcRgnHandle ;

destRgnHandle ;

QulckDraw II routines 16-75

$AE04 CStringBounds
Places the character bounds rectangle of a specified C string into a specified buffer.

Parameters

Stack before call

previous contents

cStringPtr

resultPtr

Stack after call

Long- POINTER to C string

Long-POINTER to space for rectangle

f-SP

previous contents I
- - ------ <-SP

Errors None

C extern pascal void CStringBo und s (c St r ingPtr , result Pt r)

Pointer cStringPtr ;

Rect *resultPt r;

16-76 QulckDraw II routines

$AA04 CStringWidth
Returns the sum of all the character widths, in pixels (pen displacements), in a
specified C string. This would be the pen displacement if the string were to be drawn.

Parameters

Stack before call

previous contents

wordspace

cStringPtr

Stack after call

previous contents

cStringWidth

Errors None

Word-Space for result

Long-POINTER to C string

f- SP

Word-INTEGER; width of C string in pixels

f-SP

C extern pascal Integer CStringWidth (cString Ptr)

Pointer cStringPtr ;

QuickDraw II routines 16-77

$7304

Parameters

DiffRgn
Calculates the difference of the areas enclosed by two regions and places the region
definition of the enclosing area in a destination region. The destination region,
which may be one of the source regions, must already exist; this routine does not
allocate it.

If the rgnlHandle is empty, the destination is set to an empty region.

Stack before call

previous contents

-- rgnlHandle --· Long-HANDLE to one source region

-- rgn2Handle --· Long-HANDLE to another source region

-- diffRgnH andle --· Long-HANDLE to destination region

f-SP

Stack after call

previous contents I
--------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void DiffRgn (rgnlHandle , rgn2Handle , dif f RgnHandle)

16-78

RgnHandle

RgnHandle

RgnHandle

QuickDraw II routines

rgnlHandle ;

rgn2Handle ;

diffRgnHandle ;

$6804

Parameters

DisposeRgn
Deallocates the memory for a specified region. For more information about how
memory is allocated and deallocated, see Chapter 12, "Memory Manager," in
Volume 1.

Stack before call

previous contents

rgnHandle Long-HANDLE of region being disposed

<-SP

Stack after call

previous contents I
------- -<-SP

Errors Memory Manager errors Returned unchanged

C e xtern pascal void DisposeRgn (rgnHandle)

RgnHandle rgnHandle ;

QuickDraw II routines 16-79

$A404 DrawChar
Draws a specified character at the current pen location and updates the pen location.

Parameters

Stack before call

previous contents

theChar

Stack after call

Word-ASCII code of character to be drawn (0-255)

f-SP

previous contents I
-------- f- SP

Errors None

C extern pascal void DrawChar (the Char)

Word theChar ;

16-80 QulckDraw II routines

$A604 DrawCString
Draws a specified C string at the current pen location and updates the pen location.

Parameters

Stack before call

previous contents

cStringPtr

Stack after call

Long-POINTER to C string

~SP

previous contents I
-------- ~SP

Errors None

C extern pascal void DrawCString (cStringPtr)

Pointer cStringPtr ;

QuickDraw II routines 16-81

$A504

Parameters

Drawstring
Draws a specified Pascal-type string at the current pen location and updates the pen
location.

Stack before call

previous contents

strlngPtr

Stack after call

Long-POINTER to Pascal-type string to be drawn

~SP

previous contents I
--------~SP

Errors None

C extern pascal void DrawString (stringPtr)

Pointer stringPtr ;

16-82 QulckDraw II routines

$A704 DrawText
Draws specified text at the current pen location and updates the pen location.

Parameters

Stack before call

previous contents

textPtr

textLength

Long-POINTER to text to be drawn

Word-INTEGER; number of bytes in text to be drawn

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void DrawText (textPtr , t ext Lengt h)

Pointer textPtr ;

Word text Length ;

QulckDraw II routines 16-83

$7804 EmptyRgn
Indicates whether a specified region is empty.

Parameters

Stack before call

previous contents

wordspace

rgnHandle

Stack after call

previous contents

emptyFlag

Errors None

Word-Space for result

Long-HANDLE to region

~SP

Word-BOOLEAN; TRUE if region is empty, FALSE if not

~SP

C extern pas cal Boolean Empt y Rgn (rgnHandle)

RgnHandle rgnHandle ;

16-84 QulckDraw II routines

$8304

Parameters

EqualPt
Indicates whether two points are equal (two equal points have the same Y and X
coordinates).

Stack before call

previous contents

wordspace

-- potnt1Ptr

- - point2Ptr

- - ·

--·

Word-Space for result

Long-POINTER to first POINT

Long-POINTER to second POINT

~SP

Stack after call

previous contents

Errors

C

equa!Flag

None

Word-BOOLEAN; 1RUE if points are equal, FALSE if not

~SP

extern pascal Boolean Equa1Pt(point1Ptr , point2Ptr)

Point *pointlPtr ;

Point *point2Ptr ;

QuickDraw II routines 16-85

$5104 EqualRect
Indicates whether two rectangles are equal. The two rectangles must have identical
sizes and locations to be considered equal. Any two empty rectangles are always
equal.

Parameters

Stack before call

previous contents

wordspace

-- rectlPtr

-- rect2Ptr

Stack after call

previous contents

equalFlag

--·

--·

Errors None

Word-Space for result

Long-POINTER to RECT defining one rectangle

Long-POINTER to RECT defining other rectangle

Word-BOOLEAN; TRUE if rectangles are equal, FALSE if not

f-SP

C extern pascal Boolean Equa1Rect (rect1Ptr , rect2Ptr)

16-86

Rect *rect lPtr;

Rect *rect2Ptr ;

QulckDraw II routines

$7704 EqualRgn
Indicates whether two regions are equal. The two regions must have identical sizes,
shapes, and locations to be considered equal. Any two empty regions are always
e qual.

Parameters

Stack before call

previous contents

wordspace

-- rgnlHandle

- - rgn2Handle

Stack after call

previous contents

equa!Flag

--·

- - ·

Word-Space for result

Long-HANDLE to one region

Long-HANDLE to other region

~SP

Word-BOOLEAN; TRUE if regions are equal, FALSE if not

~SP

Errors Memory Manager errors Returned unchanged

C e xtern p asca l Boolean Equa 1 Rgn (rgn1Handl e , rgn 2Handle)

RgnHandle

RgnHandle

rgnlHandle ;

rgn2Hand le ;

QuickDraw II routines 16-87

$6404 EraseArc
Erases the interior of a specified arc by filling it with the background pattern.

Parameters

Stack before call

previous contents

-- rectPtr

startAngle

arcAngle

- - · Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; starting angle in degrees

Word-INTEGER; arc angle in degrees

~SP

Stack after call

prevtous contents I
--------~SP

Errors

C

16-88

None

ext e rn p ascal void EraseArc (rectPtr , startAngle , arcAngle)

Rect *re ctPtr ;

Integer

Integer

startAngle ;

arcAng l e;

QulckDraw II routines

$5A04 EraseOval
Erases the interior of a specified oval by filling it with the background pattern.

Parameters

Stack before call

previous contents

rectPtr Long-POINT~R to RECT defining enclosing rectangle

~SP

Stack after call

previous contents I
-------- ~SP

Errors

C

None

extern pascal void EraseOval (rectPtr)

Rect *rectPtr ;

QuickDraw II routines 16-89

$BE04

Parameters

Erase Poly
Erases the interior of a specified polygon by filling it with the background pattern.
Because polygons are treated differently than other closed shapes, the frame of the
polygon (if drawn) is not completely erased. See the section "Polygons" in this
chapter for more information.

Important

Because this call allocates and deallocates some temporary memory space,
Memory Manager errors can occur.

Stack before call

previous contents

polyHandle Long-HANDLE to polygon

~SP

Stack after call

previous contents I
-------- ~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void ErasePoly(polyHandle)

Handle polyHandle ;

16-90 QulckDraw II routines

$5504 EraseRect
Erases the interior of a specified rectangle by filling it with the background pattern.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT defining rectangle

f- SP

Stack after call

previous contents I
--------f-SP

Errors

C

None

extern pascal void EraseRect(rectPtr)

Rect *rectPtr ;

QulckDraw II routines 16-91

$7B04 EraseRgn
Erases the interior of a specified region by filling it with the background pattern.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void EraseRgn(rgnHandle)

RgnHandle rgnHandle ;

16-92 QulckDraw II routines

$5F04

Parameters

EraseRRect
Erases the interior of a specified round rectangle by filling it with the background
patte rn.

The corners of the round rectangle are sections of an oval defined by ova/Height and
ova/Width. For more information, see Figure 16-12 in the section "Rectangles" in
this chapter.

Stack before call

previous contents

-- rectPtr

ovalWtdth

ova/Height

- - · Long- POINTER to RECT defining enclosing rectangle

Word- INTEGER; width, in pixels, of oval defining rounded corners

Word-INTEGER; height, in pixels, of oval defining rounded corners

~SP

Stack after call

previous contents '
- ------- ~SP

Errors

C

None

extern pascal void EraseRRect (rectPtr , ovalWi dth , ova lHe ight)

Rect *rectPtr ;

Word ovalWidth ;

Word ovalHeight;

QulckDraw II routines 16-93

$6604 FillArc
Fills the interior of a specified arc with a specified pen pattern.

Parameters

Stack before call

previous contents

-- rectPtr

startAngle

arcAngle

-- patternPtr

--·

--·

Long-POINTER to RECT defining rectangle

Word-INTEGER; starting angle in degrees

Word-INTEGER; arc angle in degrees

Long-POINTER to pattern

f-SP

Stack after call

previous contents I
--------- f- SP

Errors

C

16-94

None

extern pascal void FillArc(rectPtr,startAngle,arcAngle,patternPtr)

Rect *rectPtr;

Integer

Integer

Pattern

startAngl e ;

arcAngle;

patternPtr;

QuickDraw II routines

$5C04 FillOval
Fills the interior of a specified oval with a specified pen pattern.

Parameters

Stack before call

previous contents

rectPtr

patternPtr

Stack after call

Long-POINTER to RECT defining enclosing rectangle

Long-POINTER to pattern

~SP

previous contents I
--------~SP

Errors

C

None

extern pascal void FillOval(rectPtr,patternPtr)

Rect *rectPtr;

Pattern patternPtr;

QuickDraw II routines 16-95

$C004

Parameters

FillPoly
Fills the interior of a specified polygon with a specified pen pattern. Because
polygons are treated differently than other closed shapes, the frame of the polygon (if
drawn) is not completely filled. See the section "Polygons" in this chapter for more
information.

Important

Because this call allocates and deallocates some temporary memory space,
Memory Manager errors can occur.

Stack before call

prevtous contents

polyHandle Long-HANDLE to polygon

patternPtr

Stack after call

Long-POINTER to pattern

~SP

previous contents I
--------~SP

Errors

C

Memory Manager errors Returned unchanged

e xtern p a scal void Fi llPoly (poly Ha ndle , patte r nPtr)

Ha nd le

Patt e rn

polyHand l e;

patter nPtr ;

16-96 QulckDraw II routines

$5704 FillRect
Fills the interior of a specified rectangle with a specified pen pattern.

Parameters

Stack before call

previous contents

rectPtr

patternPtr

Stack after call

Long-POINTER to rectangle

Long-POINTER to pattern

f--- SP

previous contents I
- ------- f--- SP

Errors None

C extern pascal void FillRect(rectPtr , patternPtr)

Rect *rectPtr ;

Pattern patternPtr ;

QulckDraw II routines 16-97

$7D04 FillRgn
Fills the interior of a specified region with a specified pen pattern.

Parameters

Stack before call

previous contents

rgnHandle

patternPtr

Stack after call

Long- HANDLE to region

Long-POINTER to pattern

~SP

prevtous contents I
- ------- ~ SP

Errors None

C e xte r n pasca l void Fi llRgn(rgnHa nd l e , patternPtr)

RgnHandl e r gnHandl e;

Pat tern pa tternPtr ;

16-98 QulckDraw II routines

$6104

Parameters

FillRRect
Fills the interior of a specified round rectangle with a specified pen pattern.

The corners of the round rectangle are sections of an oval defined by ova/Height and
ova/Width. For more information, see Figure 16-12 in the section "Rectangles" in
this chapter.

Stack before call

previous contents

-- rectPtr

ova/Width

ova/Height

--· Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; width, in pixels, of oval defining rounded corners

Word- INTEGER; height, in pixels, of oval defining rounded corners

-- patternPtr --· Long-POINTER to pattern

~SP

Stack after call

previous contents I
-------- ~SP

Errors

C

None

extern pascal void FillRRect (rec tPtr,ovalWidth,ovalHeight, pat ternPt r)

Rect *rectPtr;

Word oval Width ;

Word ovalHeight;

Pattern patternPtr;

QulckDraw II routines 16-99

$CC04

Parameters

ForceBufDims
Sets the size of the QuickDraw II clipping and text buffers, but does not pad
maxFBRExtent in any way. The maxFBRExtent value must include not only the
greatest width of the character but also any extra width necessary because of style
modifications, chE:xtra, and spExtra.

•!• Note: You need to make this call only if your application is going to use, or allow
the user to choose, fonts that have unusually large values of chExtra and spExtra.
See the section "Fonts and Text in QuickDraw II" in this chapter for more
information .

Although SetBufDims and ForceBufDims may be called at any time, it is usually best
to call them once with reasonable maximum values early in the application (if at all),
because claiming and clearing a buffer can take lots of time.

Stack before call

previous contents

maxWidth

maxFontHeight

maxFBRExtent

Word-INTEGER; width, in bytes, of widest pixel map to be used

Word-INTEGER; height, in pixels, of tallest font the application will use

Word-INTEGER; greatest jbrExtent in pixels of any font to be used

~SP

Stack after call

previous contents I
--------~SP

Errors Memory Manager errors Returned unchanged

C ext ern pascal void ForceBufDims (maxWi dth , maxFontHeight , maxFBRExtent)

Word ma xWidth ;

Word maxFontHeight ;

Word ma xFBRExtent ;

16-100 QuickDraw II routines

$6204 FrameArc
Draws the frame of a specified arc using the current pen mode, pen pattern, and pen
size. Only pixels entirely within the rectangle are affected.

Parameters

Stack before call

previous contents

-- rectPtr

startAngle

arcAngle

Stack after call

--· Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; starting angle in degrees

Word-INTEGER; arc angle in degrees

~SP

previous contents '
--------~SP

Errors

C

None

extern pascal void FrameArc (r e ctPt r,s t a rtAngle ,arcAngl e)

Rect *rectPtr ;

Integer

Integer

st art Ang le ;

arcAngle ;

QuickDraw II routines 16-101

$5804

Parameters

FrameOval
Draws the frame of a specified oval using the current pen mode, pen pattern, and pen
size. Only pixels entirely within the rectangle are affected.

Important
If a region Is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

Stack before call

previous contents

rectPtr Long-POINTER to RECT defining enclosing rectangle

Stack after call

previous contents I
- ------- ~ SP

Errors Memory Manager errors Returned unchanged

C extern pascal void FrameOval(rectPt r)

Rect *rectPtr ;

16-102 QulckDraw II routines

$BC04

Parameters

Frame Poly
Draws the frame of a specified polygon using the current pen mode, pen pattern, and
pen size. The polygon is framed with a series of LineTo calls.

Important

If this call Is used, parts of the frame are not affected by ErasePoly and FillPoly
calls. You can, for example, erase the frame by using another FramePoly call
using the background pattern. In addition, if a region Is open, this command
contributes to the region definition; this can cause Memory Manager errors to
occur.

Stack before call

prevtous contents

polyHandle

Stack after call

Long-HANDLE to polygon

f-SP

prevtous contents '
------- - f- SP

Errors Memory Manager errors Returned unchanged

C extern pasca l void FrarnePoly (polyHandle)

Handle polyHandle ;

QulckDraw II routines 16-103

$5304

Parameters

FrameRect
Draws the frame of a specified rectangle using the current pen mode, pen pattern,
and pen size. Only pixels entirely within the rectangle are affected.

Important

If a region Is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

Stack before call

previous contents

rectPtr

Stack after call

Long-POINTER to RECT defining rectangle

~SP

previous contents '
------- -~SP

Errors

C

16-104

Memory Manager errors Returned unchanged

e x tern p as c a l void Fra me Rect (rectPtr)

Rect *re c t Ptr ;

QulckDraw II routines

$7904

Parameters

FrameRgn
Draws the frame of a specified region using the current pen mode, pen pattern, and
pen size. Only pixels entirely inside the region are affected.

If a region is open and being formed, the outline of the region being framed is added
to the open region's boundary.

Important
If a region is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

Stack before call

previous contents

rgnHandle

Stack after call

Long-HANDLE to region

~SP

previous contents '
--------~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void FrameRgn(rgnHandle)

RgnHandle rgnHandle ;

QuickDraw II routines 16-105

$5D04

Parameters

FrameRRect
Draws the frame of a specified round rectangle using the current pen mode, pen
pattern, and pen size. Only pixels entirely within the rectangle are affected.

Important
If a region is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

The corners of the round rectangle are sections of an oval defined by ova/Height and
ova/Width. For more information, see Figure 16-12 in the section "Rectangles" in
this chapter.

Stack before call

previous contents

-- rectPtr

ova/Width

ova/Height

--· Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; width, in pixels, of oval defining rounded corners

Word-INTEGER; height, in pixels, of oval defining rounded corners

f-SP

Stack after call

previous contents '
------ - - f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void FrameRRect (rectPtr , ovalWidt h, ovalHeight)

Rect *rectPtr ;

Word oval Width ;

Word ova lHeig ht;

16-106 QuickDraw II routines

$0904

Parameters

Get Address
Returns a pointer to a specified table. Quick.Draw II contains a number of tables that
may be useful. The GetAddress call allows you to access these tables.

The current table!Ds are as follows:

$0001
$0002
$0003

scree n Table
conTable320
conTable640

Important
If your application Is using one of these tables, make sure the appl ication obtains
the correct pointer every time it runs. These tables will move as the ROM
version changes .

The screen table has 200 two-byte entries. Each entry is the address of the start of a
scan line in the display buffer. The zeroth entry is $2000, which is the address of scan
line O; entry 1 is $20AO, which is the address of scan line 1; and so on.

The conTable320 and conTable640 tables are used to convert from bytes that are
one bit per pixel to bytes that are four and two bits per pixel respectively. The
conTable320 table has 256 four-byte entries; the conTable64 0 table has 256 two­
byte entries. These entries are the two- and four-bit-per-pixe l representations of one­
bit-per-pixel bytes .

Stack before call

previous contents

longspace

table!D

Stack after call

previous contents

tablePtr

Long-Space for result

Word-INTEGER; ID of table whose pointer will be retrieved

~SP

Long-POINTER to table in ROM

~ SP

QulckDraw II routines 16-107

Errors None

C extern pascal Pointer GetAddress (t ab leID)

Word table ID ;

Assembly-language example
The byte containing $37 appears as follows in one-, two-, and four-bit-per-pixel
mode :

One-bit

%00110111

Two -bit

o/<DO 00 11 11 00 11 11 11

Four-bit

$00FF OFFF

The two- and four-bit versions would be obtained from the table as follows:

l da OneBit

and #$00FF

asl a

tay

lda OneBit

and #$00FF

asl a

asl a

lda [TwoBitTable) , y tay

lda [FourBitTable) , y

tax

iny

iny

Pick up the byte

Mask off the high byte

Multiply by 2 or 4

Put result in y

Load out of table through y

Save in x

Bumpy

lda [FourBitTable] , y ; Get the second word

In both cases, the addresses obtained from GetAddress are already on the direct
page.

16-108 QulckDraw II routines

$B104 Get Arc Rot
Returns the value of the arcRot field in the current GrafPort.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

Word-Space for result

~SP

arcRot Word-INTEGER; value of arcRot field

~SP

Errors None

C extern pascal Integer GetArcRot ()

QulckDraw II routines 16-109

$A304 GetBackColor
Returns the value of the bgColor field from the GrafPort.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

backColor

Errors None

Word- Space for result

~SP

Word-INTEGER; value of bgColor field

~SP

C extern p a scal Word GetBackColor ()

16-110 QulckDraw II routines

$3504 GetBackPat
Copies the current background pen pattern from the current Graf'Port to a specified
location.

Parameters

Stack before call

previous contents

patternPtr Long-POINTER to location for pattern

f- SP

Stack after call

previous contents I
--------f-SP

Errors None

C extern pascal void GetBackPat (patternPtr)

Pattern patternPtr ;

QuickDraw II routines 16-111

$D504 GetCharExtra
Returns the chExtra field from the Grafport.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

Long-Space for result

~ SP

charExtra Long-FIXED; value of chExtra field

~SP

Errors None

C extern pascal Fixed GetCharExtra ()

16-112 QulckDraw II routines

$2504 GetClip
Copies the clipping region to a specified region. The destination region must have
been created earlier with a NewRgn call.

Parameters

Stack before call

previous contents

rgnHandle

Stack after call

Long-HANDLE to region

f-SP

previous contents I
----- --- f- SP

Errors Memory Manager errors Returned unchanged

C e x tern pascal void GetClip (rgnHandle)

RgnHandle rgnHandle ;

QulckDraw II routines 16-113

$C704 GetClipHandle
Returns a copy of the handle to the clipping region.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

rgnHandle

Errors None

Long-Space for result

f-SP

Long-HANDLE to clipping region

f-SP

C extern p a sca l RgnHandle GetClipHandle ()

16-114 QuickDraw II routines

$1104 GetColorEntry
Returns the value of a specified color in a specified color table .

Parameters

Stack before call

previous contents

wordspace

tableNumber

entryNumber

Stack after call

previous contents

color

Errors $0450

$0451

Word-Space for result

Word-INTEGER; number of color table

Word-INTEGER; number of color to be examined

~SP

Word-Color of entry

~SP

badTableNum

badColorNum

Invalid table number; 0 to 15 are valid

Invalid color number; 0 to 15 are valid

C extern pascal Word GetColorEntry (tableNurnber , entryNumber)

Word tableNumber ;

Word entryNumber ;

QulckDraw II routines 16-115

$0F04 GetColorTable
Fills a specified color table with the contents of another color table.

Parameters

Stack before call

previous contents

tableNumber

destTablePtr

Word-INTEGER; color table to be copied

Long-POINTER to color table to receive new values

Stack after call

previous contents I
-------- f- SP

Errors $0450 badTableNum Invalid table number; 0 to 15 are valid

C e xtern pasca l void GetColorTable (tableNumber , destTablePtr)

Word t ableNumber ;

Co l orTable de s tTablePtr ;

16-116 QulckDraw II routines

$8F04 GetCursorAdr
Returns a pointer to the current cursor record. See the section "Cursors" in this
chapter for the definition of the cursor record.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

cursorPtr

Errors None

Long-Space for result

~SP

Long-POINTER to current cursor record

~SP

C extern pascal Pointer GetCursorAdr ()

QuickDraw II routines 16-117

$CF04

Parameters

GetFGSize
Returns the size of the font globals record. The font globals record, which contains
information about the font, may increase in length in future versions of QuickDraw II.
The GetFGSize routine tells your application how much space to allocate for the
record.

This call is primarily intended to provide backward compatibility. Under normal
circumstances, you'll probably prefer to use the GetFontLore routine. See the section
"GetFontLore" in this chapter.

•!• Note: The information in the record will only increase. Fields that have been
defined will not disappear, but additional fields may be added at the end of the
font globals record.

Stack before call

prevtous contents

wordspace

Stack after call

previous contents

fgSize

Errors None

Word-Space for result

~ SP

Word-INTEGER; size of font globals record

~SP

C extern pascal Word GetFGSize()

16-118 QuickDraw II routines

$9504 GetFont
Returns a handle to the current font.

Parameters

Stack before call

previous contents

longs pace

Stack after call

previous contents

JontHandle

Errors None

Long-Space for result

f- SP

Long-HANDLE to font

f-SP

C e xtern pascal FontHndl GetFont ()

QulckDraw II routines 16-119

$9904 GetFontFlags
Returns the current font flags word. See Figure 16-37 in the section "SetFontFlags" in
this chapter for the possible JontFlags values.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

JontFlags

Errors None

Word-Space for result

f-SP

Word-INTEGER; current font flags word (see Figure 16-37)

f-SP

C extern pascal Word GetFontFlags()

16-120 QulckDraw II routines

$9704

Parameters

GetFontGlobols
Returns information about the font globals record into a specified buffer. The size of
the font globals record is returned by the GetFGSize routine, as described in the
section "GetFGSize" in this chapter. The information represents the GrafPort's
current font and does not reflect style modifications, chExtra or spExtra fields, and
so on. Future versions of QuickDraw II may add more information at the end of this
record, but the current fields and their order will be maintained.

This call is primarily intended to provide backward compatibility. Under normal
circumstances, you'll probably prefer to use the GetFontLore routine. See the section
"GetFontLore" in this chapter.

Stack before call

previous contents

fgRecPtr

Stack after call

Long-POINTER to space for font globals record

~SP

previous contents I
---- ----- ~SP

Errors None

C e xtern pascal void GetFont Gl ob als (f gRecPtr)

FontGlobalsRecPt r fgRecPtr ;

QuickDraw II routiries 16-121

$Dl04 GetFontlD
Returns the Jont!D field of the GrafFort.

Parameters

Stack before call

previous contents

longspace Long-Space for result

f-SP

Stack after call

previous contents

Errors

C

16-122

Jont!D

None

Long-Value of Jont!D field in GrafPort

f-SP

extern pascal Longwo r d Get Font ID()

•:• Note: C Pascal-type functions do not deal properly with data structures returned
on the stack. The Long result returned by this call can be passed to any calls
requiring a font ID as a parameter. You cannot use the C dot operator to access the
individual font ID fields within the value returned by this call.

QulckDraw II routines

$9604

Parameters

GetFontlnfo
Returns information about the current font in a specified buffer. The information in
the fontinfo record does reflect current style modifications, but not the values of the
chExtra and spExtra fields of the GrafPort. See the section "Font Information Calls"
in this chapter for the definition of the font info record.

Your application can use the information returned in the fontinfo record to
determine the spacing between lines of text. Normal spacing is ascent plus descent
plus leading.

Stack before call

previous contents

-- fontlnfoRecPtr

Stack after call

Long-POINTER to space for fontinfo record

~SP

previous contents '
--------~SP

Errors None

C extern pascal v oid Get Fontinfo (f ontinfoRecPtr)

FontinfoRecPtr font i nfoRecPt r;

QulckDraw II routines 16-123

$D904 GetFontlore
Returns information, up to a specified number of bytes, about the current font in a
specified buffer. The routine returns the same values as the GetFontGlobals call (see
the section "Font Information Calls" in this chapter), except that GetFontLore will not
return more bytes than are specified in the recordSize parameter. Thus, you can set
aside a fixed amount of space for the record.

Important

This call Is available In Version 2.0 or later of QulckDraw II.

You can specify the number of bytes as equal to the maximum number of bytes in the
record for a particular version of QuickDraw II. Future versions of QuickDraw II may
add more information at the end of this record, but the current fields and their order
will be maintained.

The numBytesXfer value may sometimes be less than recordSize-for example, if the
recordStz e is larger than the number of bytes that GetFontLore has to return.

Parameters

Stack before call

previous contents

wordspace

-- recordPtr

recordSiz e

--·

Word- Space for result

Long- POINTER to space for record

Word- Maximum number of bytes to transfer

~ SP

Stack after call

previous contents

numBytesXJer Word- INTEGER; number of bytes transferred

~SP

Errors None

C extern pascal Word Get FontLore (recordPtr , recordSize)

FontGlobalsRecPtr recordPtr ;

Word reco rdSize ;

16-124 QulckDraw II routines

$A104 GetForeColor
Returns the value of the current fgColor field from the GrafPort.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

Jore Color

Errors None

Word-Space for result

f-SP

Word-INTEGER; value of fgColor field

f-SP

C extern pascal Word GetForeColor()

QuickDraw II routines 16-125

$4504 GetGraf Pro cs
Returns the pointer to the grajProcs record associated with the Grafport.

Parameters

Stack before call

previous contents

tongspace

Stack after call

previous contents

grajProcsPtr

Errors None

Long-Space for result

~SP

Long-POINTER to grajProcs record

~SP

C e xte r n pascal QDProcsPtr GetGrafProcs ()

16-126 QuickDraw II routines

$1704 GetMasterSCB
Returns a copy of the master SCB.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

masterSCB

Errors None

Word-Space for result

~SP

Word-Master SCB value

~SP

C e xte rn pascal Word Get Ma sterSCB ()

QuickDraw II routines 16-127

$2904

Parameters

GetPen
Returns the pen location.

•:• Macintosh programmers: This routine does not pass the point on the stack;
instead, it passes a pointer to the point.

Stack before call

previous contents

pointPtr

Stack after call

Long-POINTER to POINT

~SP

previous contents I
--------~SP

Errors

C

16-128

None

extern pascal void GetPen(pointPtr)

Point *pointPtr ;

QulckDraw II routines

$3304 GetPenMask
Returns the pen mask to a specified location.

Parameters

Stack before call

previous contents

maskPtr

Stack after call

Lon~- POINTER to space for mask

f- SP

previous contents I
-------- f- SP

Errors None

C extern pascal void GetPenMask(maskPtr)

Mask maskPtr;

QuickDraw II routines 16-129

$2F04 Get Pen Mode
Returns the pen mode from the current GrafFort. See Table 16-9 in the section
"SetPenMode" in this chapter for the pen mode values.

Parameters

Stack before call

previous contents

wordspace

Stack after call

prevtous contents

penMode

Errors None

Word-Space for result
(-SP

Word-INTEGER; pen mode value, as shown in Table 16-9

(-SP

C extern pascal Word GetPenMode ()

1-6-130 QulckDraw II routines

$3104 Get Pen Pat
Copies the current pen pattern from the current GrafFort to a specified location.

Parameters

Stack after call

previous contents

patternPtr

Stack after call

Long-POINTER to space for pattern

f-SP

prevtous contents I
-------- f- SP

Errors None

C extern pascal void GetPe n Pat (patternPtr)

Pattern patternPtr ;

QulckDraw II routines 16-131

$2D04 GetPenSize
Returns the current pen size to a specified location.

Parameters

Stack before call

previous contents

pointPtr

Stack after call

Long-POINTER to space for POINT

~SP

previous contents I
---------~SP

Errors

C

16-132

None

extern pascal void Get PenS i ze (pointPtr)

Point *pointPt r ;

QuickDraw II routines

$2B04 Get PenState
Returns the pen state from the GrafPort to a specified location. See Figure 16-38 in the
section "SetPenState" in this chapter for the definition of the pen state record.

Parameters

Stack before call

previous contents

penStatePtr Long-POINTER to space for pen state record

f-SP

Stack after call

previous contents I
---- ---- f- SP

Errors None

C extern pascal void GetPenState (penSt a t e Pt r)

PenStatePtr penSt a t e Pt r;

QulckDraw II routines 16-133

$3F04 GetPicSave
Returns the value of the picSave field of the GrafPort.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

-- picSaveValue

Errors None

Long-Space for result

~SP

Long-Current picSave value

~SP

C extern pascal Longint GetPicSave ()

16-134 QuickDraw II routines

$8804 GetPixel
Returns the pixel below and to the right of a specified point.

The thePixel result is returned in the lower bits of the word. If the current drawing
location has a chunkiness of 2, two bits of the word are valid. If the current drawing
location has a chunkiness of 4, four bits of the word are valid.

There is no guarantee that the point actually belongs to the port.

Parameters

Stack before call

previous contents

wordspace Word-Space for result

h

V

Word-Horizontal value of point, in global coordinates

Word-Vertical value of point, in global coordinates

~SP

Stack after call

previous contents

thePixel

Errors

C

None

Word-Pixel value

~SP

extern pascal Word GetPixel (h , v)

Integer h ;

Integer v ;

You can also use the following alternate form of the call:

exte rn pascal Word GetPixel (point)

Point point ;

QuickDraw II routines 16-135

$4304 Get PolySave
Returns the value of the polySave field of the GrafPort.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

- - polySaveValue

Errors None

Long-Space for result

~ SP

Long-Current polySave value

~SP

C extern pascal Longword GetPolySave ()

16-136 QuickDraw II routines

$1C04 GetPort
Returns a pointer to the current Grafl>ort.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

Long-Space for result

~SP

resultPtr Long-POINTER to GrafPort

~SP

Errors None

C e xtern pascal GrafPortPt r GetPo r t()

QuickDraw II routines 16- 137

$1E04 GetPortloc
Gets the current port's loclnfo record and puts it at the specified location.

Parameters

Stack before call

previous contents

loclnfoPtr Long-POINTER to space for loclnfo record

~SP

Stack after call

previous contents I
-------- ~SP

Errors None

C e xtern pascal void GetPortLoc (locinfoPtr)

LocinfoPtr locinfoPt r;

16-138 QulckDraw II routines

$2004 Get Port Re ct
Returns the current Graf'Port's port rectangle.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to space for RECT defining rectangle

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

e xtern pascal void GetPo r tRect (rectPtr)

Re ct *rectPtr ;

QuickDraw II routines 16-139

$4104 GetRgnSave
Returns the value of the rgnSave field of the GrafFort.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

-- rgnSaveValue

Errors None

Long- Space for result

f-SP

Long- Current rgnSave value

f-SP

C extern pascal Longword GetRgnSav e ()

16-140 QulckDraw II routines

$D804 GetRomFont
Fills a specified buffer with information about the font in ROM.

Parameters

Stack before call

previous contents

recordPtr

Stack after call

Long-POINTER to space for ROM font record (see Figure 16-33)

f- SP

previous contents I
-------- f- SP

Errors None

C extern pascal void GetROMFont (recordPt r)

RomFontRecPt r recordPtr ;

(continued)

QulckDraw II routines 16-141

The record
The record pointed to by recordPtrhas the form illustrated in Figure 16-33.

Offset Field

so
Word-INTEGER specifying font family number rfFamNum

l

2
rfFamSty/e Word-Specifying font style

3
4

rfSlze Word- INTEGER specifying font size in points
5
6
7

rfFontHandle Long-HANDLE to font
8
9
A
B

rfNamePfr Long-POINTER to font name
C
D
E

rfFbrExtent Word-INTEGER indicating fbrExtent
F

Figure 16-33
ROM font record

16-142 QulckDraw II routines

$1304 GetSCB
Returns the value of a specified SCB (scan line control byte) .

Parameters

Stack before call

previous contents

wordspace

scanline

Stack after call

previous contents

scb

Errors $0452

Word-Space for result

Word-INTEGER; scan line whose SCB is to be examined

~ SP

Word-Value of SCB

~SP

badScanLine Invalid scan line number; 0 to 199 are valid

C e xtern pascal Word GetSCB(scanLine)

Word scan Line ;

QuickDraw II routines 16-143

$9F04 GetSpaceExtra
Returns the value of the spExtra field from the GrafPort.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

spaceExtra

Errors None

Long-Space for result

f- SP

Long-FIXED; value of spF.xtra field

f-SP

C extern pascal Fixed GetSpaceExtr a()

16-144 QuickDraw II routines

$0C04 GetStandardSCB
Returns a copy of the standard SCB in the low-order byte of the word.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

sch

Errors None

Word-Space for result

~SP

Word-Standard SCB (see Figure 16-34)

~SP

C extern pascal Word GetStandardSCB ()

Standard SCB
The standard SCB has values as shown in Figure 16-34.

!1s!14!13!12!1111019IaI7161s14I3121 , 1 o I

Rese~ed; set to O J JJ J
Color table 320 = 0

Interrupt off = 0

Figure 16-34
Standard SCB

Color fill mode off = 0

Reserved for future use

Color table O = 0000

QuickDraw II routines 16-145

$4904 GetSysField
Returns the value of the sysField field of the GrafPort.

Parameters

Stack before call

prevtous contents

longspace

Stack after call

previous contents

sysFteld

Errors None

Long-Space for result

f-SP

Long- Current sysFteld value

f-SP

C extern p a scal Longint GetSysField ()

16-146 QuickDraw II routines

$8304 GetSysFont
Returns a handle to the current system font.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

JontHandle

Errors None

Long-Space for result

f-SP

Long-HANDLE to current system for

f-SP

C extern pascal FontHndl GetSysFont()

QuickDraw II routines 16-147

$9B04

Parameters

GetTextFace
Returns the current text face. See Figure 16-39 in the section "SetTextFace" in this
chapter for the bit values for the textFace parameter.

Stack before call

previous contents

wordspace Word-Space for result

f--- SP

Stack after call

previous contents

Errors

C

16-148

textFace

None

Word-INTEGER; text face (see Figure 16-39 in "SetTextFace")

f--- SP

extern pascal TextStyle GetTextFace ()

QuickDraw II routines

$9D04 GetTextMode
Returns the current text mode. See Table 16-10 in the section "SetTextMode" in this
chapter for the modes used only for text.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

textMode

Errors None

Word-Space for result

f-SP

Word-INTEGER; text mode (see Table 16-10 in "SetTextMode")

f-SP

C e xtern pascal Word GetTe xt Mode ()

QuickDraw II routines 16-149

$D304

Parameters

GetTextSize
Returns the current value of the t.xSize field of the GrafPort. This value may not be the
same as the point size of the current font; to obtain that value, use the GetFontLore or
GetFontGlobals routines.

Stack before call

previous contents

wordspace Word-Space for result

f-SP

Stack after call

previous contents

Errors

C

16-150

textSize

None

Word-Current value of t.xSiz e field

f-SP

e x tern pascal Integer GetTextSize ()

QuickDraw II routines

$4704 GetUserField
Returns the value of the userField field of the Grafport.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

userField

Errors None

Long-Space for result

~SP

Long-Current userField value

~SP

C e xtern pascal Longint GetUse rField()

QulckDraw II routines 16-151

$C904 GetVisHandle
Returns a copy of the handle to the visible region.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

-- visRgnHandle

Errors None

Long-Space for result

f-- SP

Long-HANDLE to region

f-- SP

C extern pascal RgnHandle GetVisHandle()

16- 152 Quic kDraw II routines

$B504 GetVisRgn
Copies the contents of the visible region into a specified region. The region must
have already been created with a NewRgn call.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void GetVisRgn(rgnHandle)

RgnHandle rgnHandle ;

QuickDraw II routines 16-153

$8504

Parameters

GlobalTolocal
Converts a point from global coordinates to local coordinates. Global coordinates
have 0,0 as the upper left corner of the pixel image. Local coordinates are based on
the current boundary rectangle of the GrafPort.

Stack before call

previous contents

pointPtr

Stack after call

Long-POINTER to POINT to be converted

~SP

previous contents '
----'----- - ~ SP

Errors None

C extern p a scal void Glob alToLocal (pointPtr)

Point *pointPtr ;

16-154 QulckDraw II routines

$0B04

Parameters

Errors

C

$0A04

Parameters

Errors

C

GrafOff
Turns off the Super Hi-Res graphics mode. The routine affects only the bit in the New
Video register that affects what is displayed. It does not change the linearization bit in
the field. See the Apple JIGS Hardware Reference for more information.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void GrafOff ()

GrafOn
Turns on the Super Hi-Res graphics mode. The routine affects only the bit in the New
Video register that affects what is displayed. It does not change the linearization bit in
the field. See the Apple JIGS Hardware Reference for more information.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void GrafOn ()

QuickDraw II routines 16-155

$9004

Parameters

Errors

C

$2704

Parameters

Errors

C

HideCursor
Hides the cursor by decrementing the cursor level. A cursor level of O indicates the
cursor is visible; a cursor level less than O indicates the cursor is not visible.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void HideCursor()

HidePen
Decrements the pen level. A non-negative pen level indicates that drawing will
occur; a negative pen level indicates that drawing will not occur.

The stack is not affected by this call. There are no input or output parameters.

None

ext ern pascal vo i d HidePen()

16-156 QulckDraw II routines

$0704 lnflateTextBuffer
Ensures that the text buffer is big enough to handle a font with the specified width and
height, increasing it if necessary.

This routine is usually used only by the Font Manager, but you may need it if your
application is dealing with fonts without the Font Manager's help.

Parameters

Stack before call

previous contents

newWidth

newHeight

Stack after call

Word-INTEGER; width of font

Word-INTEGER; height of font

~SP

previous contents I
--------~SP

Errors None

C extern pascal void InflateTextBuffer (newWidth ,newHeight)

Word newWidth;

Word newHeight;

QuickDraw II routines 16-157

$0D04

Parameters

lnitColorTable
Returns a copy of the standard color table for the current mode, as shown in
Table 16-7.

Stack before call

prevtous contents

tablePtr

Stack after call

Long-POINTER to space for standard color table (see Table 16-7)

f-SP

previous contents I
-------- f- SP

Errors None

C extern pascal void InitColorTable (tablePtr)

ColorTable tablePtr;

16-158 QulckDraw II routines

Standard color tables
The standard color tables are shown in Table 16-7.

Table 16-7
Standard color tables

Pixel Master Pixel Master
va lue Name color value Name color

Entries for 320 mode Entries for 640 mode

0 Black 000 0 Black 000
1 Dark gray 777 1 Red FOO
2 Brown 841 2 Green OFO
3 Purple 72C 3 White FFF
4 Blue OOF 4 Black 000
5 Dark green 080 5 Blue OOF
6 Orange F70 6 Yellow FFO
7 Red DOO 7 White FFF
8 Beige FA9 8 Black 000
9 Yellow FFO 9 Red FOO

10 Green OEO A Green OFO
11 Light blue 4DF B White FFF
12 Lilac DAF C Black 000
13 Periwinkle blue 78F D Blue OOF
14 Light gray CCC E Yellow FFO
15 White FFF F White FFF

QuickDraw II routines 16-159

$CA04

Parameters

Errors

C

lnitCursor
Reinitializes the cursor. The cursor is set to the arrow cursor and made visible.

This routine also checks the master SCB and sets the cursor accordingly. Use this
routine if you want to change modes in the middle of a program. The steps you take to
do this are

1 . Hide the cursor if it is not already hidden.

2 . Set the master SCB to the mode you want.

3. Set all the SCBs to the master SCB.

4 . Set the color table the way you want it.

5. Repaint the screen for the new mode.

6. Call InitCursor.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void InitCursor ()

16-160 QulckDraw II routines

$1904 lnitPort
Initializes specified memory locations as a standard port.

InitPort, unlike the OpenPort routine, assumes that the region handles are valid and
does not allocate new handles. Otherwise, InitPort performs the same functions as
OpenPort.

Parameters

Stack before call

previous contents

portPtr

Stack after call

Long-POINTER to port

~SP

previous contents I
--------~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void InitPort(portPtr)

GrafPortPtr portPtr ;

QuickDraw II routines 16-161

$4C04

Parameters

lnsetRect
Insets a specified rectangle by specified displacements. The value specified as dH is
added to the left and subtracted from the right; the value specified as dV is added to
the top and subtracted from the bottom.

Stack before call

previous contents

-- rectPtr

dH

dV

Stack after call

--· Long-POINTER to rectangle

Word-INTEGER; horizontal displacement

Word-INTEGER; vertical displacement

f- SP

previous contents I
--------f- SP

Errors

C

16-162

None

extern pascal void InsetRect (rectPtr ,dH,dV)

Rect *rectPtr;

Integer dH;

Integer dV;

QulckDraw II routines

$7004

Parameters

lnsetRgn
Shrinks or expands a specified region. All points on the region boundary are moved
inward a distance of dHhorizontally and dVvertically. If dHor dVis negative, the
points are moved outward in that direction. InsetRgn leaves the region centered on
the same position but moves the outline. InsetRgn of a rectangular region works just
like InsetRect.

Stack before call

previous contents

- - rgnHandle --· Long-HANDLE to region being inset

Word-INTEGER; horizontal displacement

Word-INTEGER; vertical displacement

dH

dV
f-SP

Stack after call

previous contents I
---- --- - f- SP

Errors Memory Manager errors Returned unchanged

C e xtern pascal v oid InsetRgn (rgnHandle,dH,dV)

RgnHandle r gn Handle ;

I nteger dH;

Integer dV;

QulckDraw II routines 16-163

$6504 lnvertArc
Inverts the pixels in the interior of a specified arc.

Parameters

Stack before call

previous contents

-- rectPtr

startAngle

arcAngle

--· Long-POINTER to RECT specifying enclosing rectangle

Word-INTEGER; starting angle in degrees

Word-INTEGER; arc angle in degrees

~SP

Stack after call

previous contents I
--------~SP

Errors

C

16-164

None

extern pascal void InvertArc (rectPtr ,startAngle , arcAngle)

Rect *rectPtr ;

Integer

Integer

startAngle ;

arcAngle ;

QulckDraw II routines

$5B04 lnvertOval
Inverts the pixels in the interior of a specified oval.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT specifying enclosing rectangle

f-SP

Stack after call

previous contents I
--------- f- SP

Errors

C

None

extern pascal void InvertOval(rectPtr)

Rect * r ectPtr ;

QuickDraw II routines 16-165

$BF04

Parameters

lnvertPoly
Inverts the pixels in the interior of a specified polygon. The polygon is inverted by
opening a region, drawing lines, closing the region, and inverting the region.

Important
Because this call a llocates and deallocates some temporary merriory space,
Memory Manager errors can occur.

Stack before call

previous contents

polyHandle Long-HANDLE to polygon

f-SP

Stack after call

previous contents I
--------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void Invert Poly(poly Handle)

Handle polyHandle ;

16-166 QuickDraw II routines

$5604 lnvertRect
Inverts the pixels in the interior of a specified rectangle.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT specifying rectangle

f-SP

Stack after call

prevtous contents I
------ -- f- SP

Errors

C

None

extern pascal void InvertRect (rectPtr)

Rect *rectPtr ;

QuickDraw II routines 16-167

$7C04 lnvertRgn
Inverts the pixels in the interior of a specified region.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region

~SP

Stack after call

prevtous contents I
-------- ~SP

Errors None

C e xtern pascal void InvertRgn (rgnHandle)

RgnH a ndle rgnHandle ;

16-168 QulckDraw II routines

$6004

Parameters

lnvertRRect
Inverts the pixels in the interior of a specified round rectangle.

The corners of the round rectangle are sections of an oval defined by ova/Height and
ova/Width. For more information, see Figure 16-12 in the section "Rectangles" in
this chapte r.

Stack before call

previous contents

-- rectPtr

ova/Width

ova/Height

--· Long- POINTER to RECT specifying enclosing rectangle

Word- INTEGER; width, in pixels, of oval defining rounded corners

Word-INTEGER; height, in pixels, of oval defining rounded corners

~SP

Stack after call

previous contents I
-------- ~SP

Errors

C

None

extern pascal void Invert RRect (rect Ptr , ova lWidth, ovalHe i g ht)

Rect *rectPtr ;

Word ovalWidth ;

Word ovalHeight ;

QuickDraw II routines 16-169

$C304 KillPoly
Disposes of a specified polygon.

Parameters

Stack before call

previous contents

polyHandle Long- HANDLE to polygon to be killed

f-SP

Stack after call

previous contents I
- ------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void KillPoly (polyHandle)

Hand le polyHandle ;

16-170 QuickDraw II routines

$3004

Parameters

Line
Draws a line from the current pen location to a new point specified by the horizontal
and vertical displacements.

Important
If a region is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

Stack before call

previous contents

dH

dV

Stack after call

Word-INTEGER; horizontal displacement in points

Word-INTEGER; vertical displacement in points

f-SP

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void Line (dH,dV)

Integer dH ;

Integer dV ;

QulckDraw II routines 16-171

$3C04

Parameters

LineTo
Draws a line from the current pen location to a specified point. The point must be
expressed in local coordinates.

Important

If a region is open, this command contributes to the region definition; this can
cause Memory Manager errors to occur.

Stack before call

previous contents

h

V

Stack after call

Word-INTEGER; horizontal point to which line will be drawn

Word-INTEGER; vertical point to which line will be drawn

~SP

previous contents I
-------- ~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void LineTo (h , v)

Integer h;

Integer v ;

You can also use the following alternate form of the call:

e xtern pascal void LineTo (point)

Point point ;

16-172 QuickDraw II routines

$8404 LocalToGlobal
Converts a point from local coordinates to global coordinates. Local coordinates are
based on the current boundary rectangle of the GrafPort. Global coordinates have
0,0 as the upper left corner of the pixel image.

Parameters

Stack before call

previous contents

pointPtr Long-POINTER to POINT to be converted

f- SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void Loca lToGloba l (pointPtr)

Point *pointPtr ;

QuickDraw II routines 16-173

$C504 MopPoly
Maps a specified polygon from a source rectangle to a destination rectangle.

Parameters

Stack before call

previous contents

-- polyHandle --· Long-HANDLE to polygon to be mapped

-- srcRectPtr

-- destRectPtr

--·

--·

Long-POINTER to RECT defining source rectangle

Long-POINTER to RECT defining destination rectangle

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

16-174

None

extern pascal void MapPoly(polyHandle,srcRectPtr,destRec tPtr)

Handle polyHandle;

Rect *srcRectPtr;

Rect *destRectPtr;

QulckDraw II routines

$8A04 MapPt
Maps a specified point from a source rectangle to a destination rectangle.

Parameters

Stack before call

previous contents

-- pointPtr

-- srcRectPtr

-- destRectPtr

--·

--·

--·

Long-POINTER to POINT

Long-POINTER to RECT defining source rectangle

Long-POINTER to RECT defining destination rectangle

f- SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void MapPt (pointPtr , srcRectPtr , destRectPtr)

Point *pointPtr;

Rect *srcRectPtr;

Rect *destRectPtr ;

QuickDraw II routines 16-175

$8804 MapRect
Maps a specified rectangle from a source rectangle to a destination rectangle.

Parameters

Stack before call

previous contents

-- rectPtr

-- srcRectPtr

-- destRectPtr

--·

--·

--·

Long-POINTER to RECT defining rectangle to be mapped

Long-POINTER to RECT defining source rectangle

Long- POINTER to RECT defining destination rectangle

f- SP

Stack after call

previous contents I
-------- f- SP

Errors

C

16-176

None

e xtern pascal void MapRect (rectPtr , srcRectPtr , destRectPtr)

Rect *rectPtr;

Rect *srcRectPtr ;

Rect *destRectPtr ;

QulckDraw II routines

$8C04 MapRgn
Maps a specified region from a source rectangle to a destination rectangle.

Parameters

Stack before call

previous contents

-- mapRgnHandle --· Long-HANDLE to region to be mapped

-- srcRectPtr

-- destRectPtr

--·

--·

Long-POINTER to RECT defining source rectangle

L ong-POINTER to RECT defining destination rectangle

f- SP

Stack after call

previous contents I
- ------ -- f- SP

Errors Memory Manager errors Retu rned unchanged

C e xtern pascal void Map Rgn (mapRg nH and le , s r c Re c tPt r , de s t dRe ctPt r)

RgnHandle mapRgnHandle ;

Rect *srcRectPtr ;

Re c t *destdRectPtr ;

QuickDraw II routines 16-177

$3804 Move
Moves the current pen location by specified horizontal and vertical displacements.

Parameters

Stack before call

previous contents

dH

dV

Stack after call

Word-INTEGER; horizontal displacement

Word-INTEGER; vertical displacement

<-SP

previous contents I
--------<-SP

Errors None

C extern pascal void Move(dH,dV)

Intege r dH;

Integer dV;

16-178 QuickDraw II routines

$2204 MovePortTo
Changes the location of the current GrafPort's port rectangle. This routine does not
affect the pixel image but changes the active area of the GrafPort. The call is normally
used by the Window Manager.

Parameters

Stack before call

previous contents
h

V

Word-INTEGER; horizontal coordinate of upper left corner

Word-INTEGER; vertical coordinate of upper left corner

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void MovePortTo (h,v)

Integer h ;

Integer v ;

QuickDraw II routines 16- 179

$3A04

Parameters

MoveTo
Moves the current pen location to a specified point. The point is specified in local
coordinates .

Stack before call

previous contents

h

V

Stack after call

Word-INTEGER; horizontal point in local coordinates

Word-INTEGER; vertical point in local coordinates
f-SP

previous contents '
--------- f- SP

Errors

C

16-180

None

extern pascal void MoveTo(h,v)

Integer h ;

Integer v;

You can also use the following alternate form of the call:

extern pascal void MoveTo (point)

Point point;

QulckDraw II routines

$6704 NewRgn
Allocates space for a new region and initializes it to an empty region. The empty
region for this purpose is a rectangular region with a bounding box of (0,0,0,0) .

Important
NewRgn Is the only routine that creates a new region; a ll other routines work
with existing regions.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

rgnHandle

Long- Space for result

f-SP

Long-HANDLE to new region

f-SP

Errors Memory Manager errors Returned unchanged

C e xtern pascal RgnHandle NewRgn ()

QuickDraw II routines 16-181

$5204

Parameters

NotEmptyRect
Indicates whether a specified rectangle is not empty. An empty rectangle has the top
greater than or equal to the bottom or the left greater than or equal to the right.

Stack before call

previous contents

wordspace Word-Space for result

rectPtr

Stack after call

Long-POINTER to RECT defining rectangle

f-SP

previous contents

notEmptyF/ag Word-BOOLEAN; TRUE if rectangle not empty, FALSE if empty

f-SP

Errors

C

$9204

Parameters

Errors

C

None

extern p asca l Boolean NotEmpt yRect (rectPtr)

Rect *rectPtr ;

Obscu reCursor
Hides the cursor until the mouse moves. This routine can get the cursor out of the way
of typing.

The stack is not affected by this call. There are no input or output parameters.

None

e xt e r n p a s c a l void Ob scureCu rsor ()

16-182 QuickDraw II routines

$C404 OffsetPoly
Offsets a specified polygon by specified horizontal and vertical displacements.

Parameters

Stack before call

prevtous contents

-- polyHandle

dH

dV

Stack after call

--· Long-HANDLE to polygon

Word- INTEGER; horizontal displacement in pixels

Word-INTEGER; vertical displacement in pixels

(-SP

prevtous contents I
-------- (- SP

Errors

C

Memory Manager errors Returned unchanged

extern pascal void OffsetPoly (polyHandle ,dH, dV)

Handle

Integer

Integer

polyHandle;

dH ;

dV ;

QuickDraw II routines 16-183

$4804

Parameters

OffsetRect
Offsets a specified rectangle by specified displacements. The value of dH is added to
the left and right; the value of dV is added to the top and bottom.

Stack before call

prevtous contents

-- rectPtr

dH

dV

Stack after call

--· Long- POINTER to rectangle

Word- INTEGER; horizontal displacement in pixels

Word- INTEGER; vertical displacement in pixels

~SP

previous contents I
-------- ~SP

Errors None

C extern pascal void Offs etRect (rectPtr , dH , dV)

Rect *rectPtr ;

Integer dH ;

Integer dV ;

16-184 QulckDraw II routines

$6F04

Parameters

OffsetRgn
Moves a region on the coordinate plane a distance of dHhorizontally and dV
vertically. The region retains its size and shape.

Stack before call

previous contents

-- rgnHandle - - · Long- HANDLE to region being offset

Word-INTEGER; horizontal displacement in pixels

Word-INTEGER; vertical displacement in pixels

dH

dV

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager e rrors Returned unchanged

C extern pascal void OffsetRgn(rgnHandle , dH , dV)

RgnHandle rgnHandle ;

Integer dH ;

Integer dV ;

QuickDraw II routines 16-185

$C104

Parameters

OpenPoly
Returns a handle to a polygon data structure that will be updated by future LineTo
calls.

The polygon is completed by making a ClosePoly call.

Stack before call

previous contents

longspace

Stack after call

Long-Space for result

~SP

previous contents

polyHandle Long-HANDLE to polygon

~SP

Errors

C

16-186

$0440 polyAlreadyOpen Polygon already open and being saved in current
GrafPort

Memory Manager errors Returned unchanged

e xtern pascal Handle OpenPoly ()

QuickDraw II routines

$1804

Parameters

Open Port
Initializes specified memory locations as a standard GrafPort, allocates a new visible
region and a new clipping region, and makes the GrafPort the current port.

Stack before call

previous contents

portPtr

Stack after call

Long-POINTER to space for GrafPort record

~SP

previous contents I
--------~SP

Errors

C

$6D04

Parameters

Errors

C

Memory Manager errors Returned unchanged

e xtern pascal void OpenPort (portPtr)

GrafPortPtr portPtr ;

OpenRgn
Allocates temporary space and starts saving lines and framed shapes for later
processing as a region definition. The routine takes no inputs; instead, it allocates
memory to hold information about the region being created. When the CloseRgn
routine is called, the region is created and this memory is freed.

While the region is open, all calls to Line, LineTo, FrameRect, FrameOval,
FrameRRect, FrameRgn, and FramePoly contribute to the region definition.

The stack is not affected by this call. There are no input or output parameters.

$0430 rgnAlreadyOpen Region already being saved in current GrafFort

Memory Manager errors Returned unchanged

extern p a scal void Ope nRg n ()

QuickDraw II routines 16-1 87

$6304 PaintArc
Paints the interior of a specified arc using the current pen mode and pen pattern.

Parameters

Stack before call

previous contents

-- rectPtr

startAngle

arcAngle

--· Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; starting angle in degrees

Word-INTEGER; arc angle in degrees

f-SP

Stack after call

previous contents I
------ - - f- SP

Errors

C

16-188

None

extern pascal void PaintArc (rectPtr , startAngle , arcAngle)

Rect *rectPtr ;

Integer

Integer

startAngle ;

arcAngle;

QulckDraw II routines

$5904 PaintOval
Paints the interior of a specified oval using the current pen mode and pen pattern.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT defining enclosing rectangle

~SP

Stack after call

previous contents I
--------~SP

Errors

C

None

extern pascal void PaintOval (rectPtr)

Rect *rectPtr ;

QuickDraw II routines 16-189

$7F04

Parameters

Paint Pixels
Transfers a region of pixels. The pixels are transferred without referencing the current
GrafPort. The source and destination are defined in the input, as is the clipping
region .

Stack before call

previous contents

-- paintParamPtr Long- POINTER to parameter block (see Figure 16-35)

f-SP

Stack after call

previous contents I
-------- f- SP

Errors $0420 notEqualChunkiness Source and destination pixel images not the
same type (one is for 320 mode display and
one for 640 mode display)

C extern pascal void PaintPixels (pa intParamPtr)

PaintParamPtr paintParamPtr;

16-190 QulckDraw II routines

Parameter block
The parameter block pointed to by paintParamPtr is shown in Figure 16-35.

Offset

$0

l

2
3
4

5
6
7
8

9
A
B

C
D
E
F

10
11
12
13
14
15

Field ~------~

ptrToSourceLoclnfo

I-------- -!

ptrToDestLoclnfo

I---------!

ptrToSourceRect

I---------!

ptrToDestPoint

1----------<

mode

I---------!

maskHandle

~------~
Figure 16-35

Long-POINTER to source location information

Long-POINTER to destination location information

Long-POINTER to source rectangle

Long-POINTER to destination point

Word-mode

Long-HANDLE to ClipRgn

Paintpjxels parameter block

QulckDraw II routines 16-191

$BD04

Parameters

Paint Poly
Paints the interior of a specified polygon using the current pen mode and pen
pattern.

Important
Because this ca ll a llocates and deallocates some temporary memory space,
Memory Manager errors can occur.

Stack before call

previous contents

polyHandle Long-HANDLE to polygon

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void PaintPoly (polyHandle)

Handle polyHandle ;

16-192 QulckDraw II routines

$5404 PaintRect
Paints the interior of a specified rectangle using the current pen mode and pen
pattern.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT defining enclosing rectangle

(-SP

Stack after call

previous contents I
-------- (- SP

Errors None

C e xtern pascal void Pai ntRect (re ctPtr)

Rect *rectPtr ;

QuickDraw II routines 16-193

$7A04 PaintRgn
Paints the interior of a specified region using the current pen mode and pen pattern.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region

f-- SP

Stack after call

previous contents I
--------- f-- SP

Errors None

C extern pascal void PaintRgn (rgnHandle)

Rg nHandle rgnHandle;

16-194 QulckDraw II routines

$5E04

Parameters

PaintRRect
Paints the interior of a specified round rectangle using the current pen mode and pen
pattern.

The corners of the round rectangle are sections of an oval defined by ova/Height and
ova/Width. For more information, see Figure 16-12 in the section "Rectangles" in
this chapter.

Stack before call

previous contents

-- rectPtr

ova/Width

ova/Height

--· Long-POINTER to RECT defining enclosing rectangle

Word-INTEGER; width, in pixels, of oval defining rounded corners

Word-INTEGER; height, in pixels, of oval defining rounded corners

f-SP

Stack after call

previous contents I
--------- f- SP

Errors

C

None

extern pascal void PaintRRect (rectPtr, ovalWidth, ovalHeight)

Rect *rectPtr;

Word ovalWidth ;

Word ovalHeight ;

QulckDraw II routines 16-195

$3604

Parameters

Errors

C

Pen Normal
Sets the pen state to the standard state, as shown in Table 16-8. Pen location and
visibility are not changed.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void PenNormal()

Standard pen state table

Table 16-8
Standard pen state

Pen state

PenSize
PenMode
PenPat
PenMask

16-196

Standard state

1,1
Copy
Black
l's

QuickDraw II routines

$D604

Parameters

PPToPort
Transfers pixels from a source pixel map to the current port and clips the pixels to the
current visible region and clipping region. The routine differs from PaintPixels in
that the current GrafFort is used as the destination.

PPToPort can help you do the clipping correctly when you are painting a pixel image
to a window.

Stack before call

previous contents

-- srcLocPtr

-- srcRectPtr

destX

destY

transferMode

--·

--·

Long-POINTER to source Loclnfo record

Long-POINTER to RECT defining source rectangle

Word-INTEGER; X coordinate of upper left corner of destination

Word-INTEGER; Y coordinate of upper left corner of destination

Word-Same as pen mode (see Table 16-9 in "SetPenMode")

~SP

Stack after call

previous contents I
--------~SP

Errors $0420 notEqualChunkiness Source and destination pixel images not the
same type (one is for 320 mode display and
one for 640 mode display)

C extern pascal void PPToPort (srcLocPtr , srcRectPtr ,destX ,de st Y, t ransferMode)

LocinfoPtr srcLocPtr ;

Rect *srcRectPtr ;

Integer destX ;

Integer destY ;

Word transferMode ;

QulckDraw II routines 16- 197

16-198

You can also use the following alternate form of the call:

extern pascal void PPToPort (s rcLocPtr , srcRectPtr , dest ,transferMode)

LocinfoPtr srcLocPtr ;

Rect *srcRectPtr ;

Point

Word

dest;

transferMode;

QulckDraw II routines

$5004 Pt2Rect
Copies a specified point to the upper left corner of a specified rectangle and another
point to the lower right corner of the rectangle.

Parameters

Stack before call

previous contents

-- pointlPtr

-- point2Ptr

-- rectPtr

Stack after call

--·

--·

--·

Long-POINTER to first source POINT

Long-POINTER to second source POINT

Long-POINTER to destination rectangle

f-SP

previous contents '
-------- f- SP

Errors

C

None

extern pascal void Pt2Rect (pointlPtr , point2Ptr , rectPtr)

Point *pointlPtr ;

Point *point2Ptr ;

Rect *rectPtr;

QuickDraw II routines 16-199

$4F04

Parameters

PtlnRect
Detects whether the pixel below and to the right of a specified point is in a specified
rectangle. The routine returns TRUE if the pixel is within the rectangle and FALSE if it
is not. For example, PtlnRect((lO, 10)),((10, 10,20,20)) is TRUE, but
PtinRect((20,20)) ,((10,10,20,20)) is FALSE.

Stack before call

prevtous contents

wordspace

-- potntPtr

-- rectPtr

- - ·

- - ·

Word-Space for result

Long-POINTER to POI NT

Long-POINTER to RECT defining rectangle

f-SP

Stack after call

previous contents

Errors

C

16-200

pointFlag

None

Word-BOOLEAN; TRUE if pixel in rectangle, FALSE if not

f-SP

extern pascal Boo l ean PtinRect (pointPtr , rectPtr)

Point *pointPtr ;

Rect *rectPtr ;

QulckDraw II routines

$7504 PtlnRgn
Checks to see whether the pixel below and to the right of a specified point is within a
specified region. The routine returns TRUE if the pixel is within the region and FALSE
if it is not.

Parameters

Stack before call

previous contents

wordspace

-- pointPtr

-- rgnHandle

Stack after call

previous contents

pixelFlag

--·

--·

Word-Space for result

Long-POINTER to POINT

Long-HANDLE to region

f-SP

Word-BOOLEAN; TRUE if pixel is within region, FALSE if not

f-SP

Errors Memory Manager e rrors Returned unchanged

C extern pascal Boolean PtlnRgn(pointPtr , rgnHandle)

Point *pointPtr ;

RgnHandle rgnHandle ;

QulckDraw II routines 16-201

$8604

Parameters

Random
Returns a pseudorandom number in the range -32768 to 32767. The sequence of
numbers generated by repeated calls to this routine depends on the randomSeed
value set by a SetRandSeed call. In particular, a call to SetRandSeed with a given
randomSeedvalue, followed by a sequence -of calls to Random (with no SetRandSeed
calls in between), will always produce the same sequence of pseudorandom numbers.
This can be useful in debugging.

Stack before call

previous contents

wordspace Word-Space for result

f- SP

Stack after call

previous contents

Errors

C

16-202

randomlnt

None

Word-INTEGER; pseudorandom number

f-SP

e xtern pascal I nteger Ra nd om ()

QuickDraw II routines

$7604 RectlnRgn
Checks whether a specified rectangle intersects a specified region.

Parameters

Stack before call

prevtous contents

wordspace

-- rectPtr

-- rgnHandle

Stack after call

previous contents

encloseFlag

- - ·

- - ·

Word-Space for result

Long-POINTER to RECT defining rectangle

Long-HANDLE to region

f-SP

Word-BOOLEAN; TRUE if intersection encloses at least a pixel,

f- SP FALSE if not

Errors Memory Manager e rrors Returned unchanged

C extern pascal Boolean RectinRgn (rectPtr , rgn Handle)

Rect *rectPtr ;

RgnHandle rgnHandle ;

QuickDraw II routines 16-203

$6C04

Parameters

RectRgn
Destroys previous region information by setting a specified region to a specified
rectangle. If the input does not describe a valid rectangle, the region is set to an
empty region. If the original region was not rectangular, the region is resized.

Stack before call

previous contents

rgnHandle Long-HANDLE to region being set

rectPtr Long-POINTER to RECT defining rectangle used as source

f-SP

Stack after call

previous contents I
--------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void RectRg n(rgnHandle , rectPtr)

RgnH a ndle rgnHandl e ;

Rect *rectPtr ;

16-204 QuickDraw II routines

$CE04 RestoreBufDims
Restores QuickDraw II's internal buffers to the sizes described in the eight-byte record
created by the SaveBufDims routine. You can use this routine when you want your
application to change temporarily (but be able to restore) the size of the QuickDraw II
buffers .

Parameters

Stack before call

previous contents

sizelnfoPtr Long-POINTER to record to be restored

f-SP

Stack after call

prevtous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void RestoreBufDims(size infoPtr)

BufDimRecPtr sizeinfoPtr;

QulckDraw II routines 16-205

$CD04 SaveBufDims
Saves QuickDraw II's buffer-sizing information in an eight-byte record. You can use
this routine when you want your application to change temporarily (but be able to
restore) the size of the QuickDraw II buffers. The buffer-sizing record is shown in
Figure 16-36.

Parameters

Stack before call

previous contents

size!nfoPtr Long-POINTER to space for record (see Figure 16-36)

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SaveBufDims(sizeinfoPtr)

BufDimRecPtr sizeinfoPtr;

Buffer-sizing record
The eight-byte record created by SaveBufDims is shown in Figure 16-36.

Offset Field ~-----, so
maxWidth

l
1-------t

2
3

textBufHelght

1-------t
4 textBufferWords

5 1-------t
6

ton/Width
7 ~----~

Figure 16-36
BufDlmRec

Word-Application-defined maximum pixel image width

Word-Current text buffer height, in pixels

Word-Current text buffer width, in words

Word-Equal to maxFBR Extent

16-206 QuickDraw II routines

$8904 ScalePt
Scales a specified point from a source rectangle to a destination rectangle.

Parameters

Stack before call

previous contents

-- pointPtr --· Long-POINTER to POINT to be scaled

-- srcRectPtr

-- destRectPtr

- - ·

- - ·

Long-POINTER to RECT defining source rectangle

Long-POINTER to RECT defining destination rectangle

~SP

Stack after call

previous contents I
-------- ~SP

Errors

C

None

extern pascal void ScalePt (pointPtr , srcRectPtr ,destRectPtr)

Point *pointPtr;

Rect *srcRectPtr ;

Rect *destRectPtr ;

QuickDraw II routines 16-207

$7E04

Parameters

ScrollRect
Shifts the pixels inside the intersection of a specified rectangle, visible region,
clipping region, port rectangle, and bounds rectangle. No other pixels are affected.
The pixels are shifted a distance of dH horizontally and dV vertically (those shifted
out of the scroll area are lost) . Positive directions are to the right and down. The
background pattern fills the space created by the scroll. In addition, the region for
updateRgnHandle is changed to the area filled with the background pattern.

•!• Note: The update region must be an existing region; ScrollRect does not create it.
If you do not want the update region, you may pass NIL.

Stack before call

previous contents

-- rectPtr

dH

dV

--· Long- POINTER to RECT defining rectangle

Word- INTEGER; horizontal distance to scroll in pixels

Word- INTEGER; vertical distance to scroll in pixels

--updateRgnHandle --· Long- HANDLE to region

Stack after call

previous contents I
-------- f- SP

Errors

C

16-208

Memory Manager e rrors Returned unchanged

extern pascal void ScrollRect(rectPtr , dH , dV , updateRgnHandle)

Rect *rectPtr ;

Integer dH ;

Integer dV;

RgnHandle updateRgnHandle ;

QuickDraw II routines

$4D04 SectRect
Calculates the intersection of two rectangles and places the intersection in a
destination rectangle. The destination rectangle can be one of the source rectangles.
If the result is not empty, the output is TRUE; if the result is empty, the output is
FALSE.

Parameters

Stack before call

previous contents

wordspace

-- rectlPtr

-- rect2Ptr

-- intersectRectPtr

Stack after call

previous contents

notEmptyFlag

Errors None

--·

--·

--·

Word-Space for result

Long-POINTER to RECT defining first source rectangle

Long-POINTER to RECT defining second source rectangle

Long- POINTER to RECT defining destination rectangle

f- SP

Word-BOOLEAN; TRUE if rectangle not empty, FALSE if empty

f-SP

C ext er n pascal Boolean SectRect(rectlPt r,rect 2Pt r ,intersectRectPtr)

Rect *rectlPtr ;

Rect *rect2Ptr ;

Rect *intersectRectPtr ;

QulckDraw II routines 16-209

$7104

Parameters

SectRgn
Calculates the intersection of two regions and places the intersection in a destination
region. The destination region, which may be one of the source regions, must
already exist; SectRgn does not allocate it.

If the regions do not intersect, or if one of the regions is empty, the destination is set
to the empty region.

Stack before call

previous contents

-- rgnlHandle --· Long-HANDLE to one source region

-- rgn2Handle --· Long-HANDLE to another source region

-- destRgnH andle --· Long-HANDLE to destination region

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SectRgn(rgnlHandle,rgn2Handle,destRgnHandle)

16-210

RgnHandle

RgnHandle

RgnHandle

QuickDraw II routines

rgnlHandle;

rgn2Handle;

destRgnHandle ;

$1404 SetAIISCBs
Sets all SCBs (scan line control bytes) to a specified value.

Parameters

Stack before call

previous contents

newSCB

Stack after call

Word-New value for SCBs

f-SP

I previous contents If- SP

Errors None

C extern pascal void SetAllSCBs(newSCB)

Word newSCB;

QuickDraw II routines 16-2 11

$8004 Set Arc Rot
Sets the arcRot field in the GrafFort to a specified value.

Parameters

Stack before call

previous contents

arcRotValue Word-INTEGER; new value of arcRot field

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetArcRot(arcRotValue)

Integer arcRotValue;

16-212 QulckDraw II routines

$A204 SetBackColor
Sets the bgColor (background color) field in the GrafFort to a specified value.
Background color has either a two- or a four-bit value, depending on the port SCB. If
the port SCB indicates 320 mode, the lower four bits of backColorare used. If the
port SCB indicates 640 mode, the lower two bits of backColor are used.

Parameters

Stack before call

previous contents

backColor

Stack after call

Word-INTEGER; background color

f- SP

previous contents I
-------- f- SP

Errors None

C extern pasca l void SetBackColor (b a ckColor)

Word backColor ;

QuickDraw II routines 16-213

$3404 SetBackPat
Sets the background pattern to a specified pattern.

Parameters

Stack before call

previous contents

patternPtr

Stack after call

Long- POINTER to pattern

~SP

previous contents I
- - - ----- ~SP

Errors None

C extern pascal void SetBackPat (patternPtr)

Pattern patternPtr ;

16-214 QulckDraw II routines

$CB04

Parameters

SetBufDims
Sets the size of the QuickDraw II dipping and text buffers. This routine overrides the
maxWidth value supplied to QDStartUp and the text buffer defaults set at that time.

•:• Note: You only need to make this call if your application is going to use, or allow
the user to choose, fonts that have unusually large values of chExtra and spExtra.

SetBufDims pads the text buffer to permit values of chExtra ~ jbrExtent (of the
currently active font), spExtra ~ jbrExtent, and style modifications that add up to 36
pixels to the bounds width (width of foreground and background) of any character.

When QDStartUp is called, it makes an internal call to SetBufDims with the following
values:

maxWidth
maxFontHeight
maxFBRExtent

As supplied by the application
2 • (height of system font)
2 • (jbrExtent of system font)

Stack before call

previous contents

maxWidth

maxFontHeight

maxFBRExtent

Word-INTEGER; width, in bytes, of widest pixel image to be used

Word-INTEGER; height, in pixels, of tallest font application will use

Word-INTEGER; greatest jbrExtent, in pixels, of any font to be used

f-- SP

Stack after call

previous contents I
--------- f-- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SetBufDims (maxWidth , maxFontHeight , maxFBRExtent)

Word maxWidth ;

Word maxFontHeight ;

Word maxFBRExtent ;

(continued)

QulckDraw II routines 16-215

More about parameters
The maxWidth parameter is the width, in bytes, of the widest pixel image the
application will draw into. The maxFontHeight parameter is the height of the tallest
font the application will use (that is, jRectHeight from the font record, computable as
ascent plus descent from the GetFontinfo call).

The maxFBRE:xtent parameter is the greatest jbrExtent value of any font the
application will use. A field in the font record, jbrExtent is returned by a GetFontlore
or GetFontGlobals call. It is defined as the greatest (horizontal) distance, in pixels,
from the character origin to the farthest foreground or background pixel of any
character in the font. For more information, see the section "Fonts and Text in
QuickDraw II" in this chapter.

16-216 QulckDraw II routines

$D404

Parameters

SetCharExtra
Sets the chExtra field in the GrafPort to the specified value. The chExtra field is used
to add width to every character in the font that has width. It does not affect O width
characters. This field is present because some fonts that look fine in one graphics
mode need a little extra space between characters in another mode.

If you set a very large value of chExtra, you may have to change the size of the
QuickDraw II buffer. See the sections "SetBufDims" and "ForceBufDims" in this
chapter.

Important

SetCharExtra uses FIXED values. You can use the Integer Math Tool Set routine
FixRatio to convert values to FIXED values.

Stack before call

previous contents

charExtra

Stack after call

Long-FIXED; value for chExtra field

f-- SP

previous contents I
- -------- f-- SP

Errors None

C extern pascal void SetCharExtra (charExtra)

Fixed charExtra ;

QulckDraw II routines 16-217

$2404 SetClip
Copies a specified region into the clipping region. The handle to the clipping region
is not changed.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SetClip (rgnHandle)

RgnHandle rgnHandle ;

16-218 QulckDraw II routines

$C604 SetClipHandle
Sets the clipRgn handle field in the GrafPort to a specified value.

Parameters

Stack before call

previous contents

rgnHandle

Stack after call

Long-HANDLE to clipping region

f- SP

I previous contents If- SP

Errors None

C extern pascal void SetClipHandle (rgnHandle)

RgnHandle rgnHandle ;

QulckDraw II routines 16-219

$1004 SetColorEntry
Sets the value of a color in a specified color table.

Parameters

Stack before call

previous contents

tableNumber

entryNumber

n,ewColor

Word-INTEGER; number of color table

Word-INTEGER; number of color to be changed

Word-INTEGER; master color value for color

~SP

Stack after call

previous contents I
--------~SP

Errors $0450

$0451

badTableNum

badColorNum

Invalid table number; 0 to 15 are valid

Invalid color number; 0 to 15 are valid

C extern pascal void SetColorEntry(tableNumber,entryNumber , newColor)

Word tableNumber;

Word entryNumber ;

ColorValue newColor ;

16-220 QulckDraw II routines

$0E04 SetColorTable
Sets a specified color table to specified values. The 16 color tables are stored starting
at $9EOO. Each table takes $20 bytes. Each word in the table represents one of 4,096
colors. The high-order nibble of the high-order byte is ignored.

Parameters

Stack before call

previous contents

tableNumber

srcTablePtr

Word-INTEGER; numbe r of table whose color values will be set

Long- POINTER to color table

~SP

Stack after call

previous contents I
--------~SP

Errors $0450 badTableNum Invalid table number; 0 to 15 are valid

C extern p a scal void SetColorTable (tableNurnber , srcTablePtr)

Word tab leNumber ;

ColorTable srcTablePtr ;

QuickDraw II routines 16-221

$8E04

Parameters

SetCursor
Sets the cursor to an image passed in a specified cursor record. If the cursor is
hidden, it remains hidden and appears in the new form when it becomes visible
again. If the cursor is visible, it appears in the new form immediately. See the section
"Cursors" in this chapter.

Stack before call

previous contents

cursorPtr Long-POINTER to cursor record

f- SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SetCursor(c ur sorPtr)

Pointer cursorPtr;

16-222 QulckDraw II routines

$6A04 SetEmptyRgn
Destroys previous region information by setting a specified region to an empty
region. The empty region for this purpose is a rectangular region with a bounding
box of (0,0,0,0). If the original region was not rectangular, the region is resized.

Parameters

Stack before call

previous contents

rgnHandle Long-HANDLE to region being modified

f- SP

Stack after call

previous contents I
--------f-SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SetEmptyRgn(rgnHandle)

RgnHandle rgnHandle;

QuickDraw II routines 16-223

$9404

Parameters

SetFont
Sets the current font to a specified font. The call also zeros out the Grafport's Jont!D
field. After the call, you can set the font ID to anything desired by using the
QuickDraw II routine SetFontID (see the section "SetFontID" in this chapter).

Important
Under most circumstances, your application should work with the Font Manager
to set the font It needs. Use this call only If your application Is handling all font
manipulation by Itself.

Stack before call

previous contents

-- newFontHandle -- Long-HANDLE to font

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetFont(newFontHandle)

FontHndl newFontHandle ;

16-224 QulckDraw II routines

$9804

Parameters

Setfontflags
Sets the font flags word to a specified value. The font flags word is used to indicate
special operations performed on the text. At the time of publication, two flags are
defined. See Figure 16-37 for the available values for those flags .

Important
The chExtra and spExtra values, and changes to character width, are applied
after the character widths are fixed by the fontF/ags setting .

Stack before call

previous contents

JontFlags Word-INTEGER; font flags (see Figure 16-37)

f- SP

Stack after call

I previous contents If- SP

Errors None

C extern pascal void SetFontFlags (fontFlags)

Word fontFlags;

QulckDraw II routines

(continued)

16-225

Font flags
The values available for fontFlags are shown in Figure 16-37.

! 1s I 14 j 13 j 12 j 11 j 10! 9 l s l 7 l 6 I s 141 31 2 ! 1 I o I
Reserved; set to O J

l JJ J
Foreground and background colors treated as a word of pixel values = l

Foreground and background colors treated as pixel values = 0

Figure 16-3 7
Font flags word

Proportional font = 00
Nonproportional spacing= 01

Numeric spacing = l 0
Invalid value = 11

If bits 1-0 are set to 00, the font is considered to be a proportionally spaced font.

If bits 1-0 are set to 01, the font is considered to be a fixed-width font (rather than a
proportional font), all characters will be equally spaced, and the width of each
character will be that of the widMax field in the fontinfo record.

If bits 1-0 are set to 10, the font is considered to be a fixed-width font, all characters
will be equally spaced, and the width of each character will be equal to the character
width of the font's O (zero) character. This feature makes it easier to line up columns
of numbers. Because the width used in numeric spacing is usually less than widMax,
some characters-for instance, W's and M's-end up overlapping other characters.
Consequently, numeric spacing is useful with the characters most commonly used
with numbers, such as the space character or the period, but is not appropriate for
general text.

If bit 2 is set to 0, the foreground and background colors are treated as pixel values;
that is, either as a two- or four-bit number depending on the GrafPort's SCB. The
other bits in the word are ignored. Each foreground pixel is given the value of the
foreground color value, and each background pixel is given the value of the
background color value. For example, in 640 mode with a foreground color word of
0110011001100110 and bit 2 set to 0, each pixel will have a value of 10.

If bit 2 is set to 1, the foreground and background colors are treated as a word's worth
of pixel values. This feature is useful when you are trying to draw text in 640 mode
using dithered colors. Each foreground pixel in a destination word is given the value
of the corresponding pixel in the foreground color word. Each background pixel in a
destination word is given the value of the corresponding p~el in the background
color word. For example, in 640 mode with a foreground color word of
0110011001100110 and bit 2 set to 1, odd-numbered pixels will have a value of 10 and
even-numbered pixels will have a value of 01.

16-226 QulckDraw II routines

$D004

Parameters

SetFontlD
Sets the Jont!D field in the GrafPort. This routine does not change the current font.

SetFontID is designed for use by the Font Manager for the benefit of the picture
routines. The picture routines use the font ID to try to find the font the application
really wanted to draw with, rather than the one that was available when the picture was
recorded .

Stack before call

previous contents

Jont!D

Stack after call

Long-Font ID

~SP

previous contents '
--------~SP

Errors None

C extern pascal void SetFontID (fo ntID)

FontID fontID ;

QulckDraw II routines 16-227

$A004

Parameters

SetForeColor
Sets the fgColor (foreground color) field in the GrafPort to a specified value.
Foreground color has either a two- or four-bit value, depending on the port SCB. If
the port SCB indicates 320 mode, the lower four bits of JoreColor are used. If the port
SCB indicates 640 mode, the lower two bits of JoreColor are used.

Stack before call

previous contents

JoreColor

Stack after call

Word- INTEGER; foreground color

f-SP

previous contents I
-------- f- SP

Errors None

C extern p asca l void SetFore Co l or(fore Color)

Word foreColor ;

16-228 QulckDraw II routines

$4404 Set Graf Pro cs
Sets the gra}Procs field of the current GrafPort to a specified value.

Parameters

Stack before call

previous contents

grajProcsPtr Long-POINTER to gra}Procs record

f-- SP

Stack after call

previous contents I
-------- f-- SP

Errors None

C extern pascal void SetGrafProcs (grafProcsPtr)

QDProcsPtr grafP r ocsPtr ;

QuickDraw II routines 16-229

$B604

Parameters

SetlntUse
Indicates to the cursor drawing code whether the code should use scan line interrupts.

QuickDraw II normally uses scan line interrupts to draw the cursor without flicker. If an
application wants to use scan line interrupts for some process of its own, it must tell
QuickDraw II not to use them.

Stack before call

previous contents

uselnt Word-BOOLEAN; TRUE for cursor to use scan line interrupts,

f- SP FALSE for cursor to not use scan line interrupts

Stack after call

previous contents I
- ------- f- SP

Errors None

C extern pascal void SetlntUse(uselnt)

Wo r d use Int ;

16-230 QulckDraw II routines

$1604

Parameters

SetMasterSCB
Sets the master SCB to a specified value. The master SCB is the global mode byte used
throughout QuickDraw II. It is used by routines such as InitPort to decide what
standard values should be put into the GrafPort.

Stack before call

prevtous contents

masterSCB Word- Value for master SCB Oow-order byte only; high-order byte= 0)

~ SP

Stack after call

I prevtous contents I~ SP

Errors None

C ext ern pascal void SetMasterSCB(mast erSCB)

Word masterSCB ;

QulckDraw II routines 16-231

$2304

Parameters

SetOrigin
Adjusts the contents of the port rectangle and the bounds rectangle so the upper left
corner of the port rectangle is set to the specified point.

The visible region is also affected, but the clipping region is not. The pen position
does not change.

Stack before call

previous contents

h

V

Stack after call

Word- INTEGER; horizontal coordinate of upper left corner

Word- INTEGER; vertical coordinate of upper left corner

f-SP

previous contents I
-------- f- SP

Errors

C

16-232

Memory Manager errors Returned unchanged

extern pascal void SetOrigin (h,v)

Integer h;

Integer v ;

You can also use the following alternate form of the call:

e xtern pasca l void SetOrigin (point)

Point point ;

QulckDraw II routines

$3204 SetPenMask
Sets the pen mask to a specified mask.

Parameters

Stack before call

prevtous contents

maskPtr

Stack after call

Long-POINTER to pen mask

f-SP

I prevtous contents If- SP

Errors None

C extern pascal void SetPenMask(maskPtr)

Mask maskPtr ;

QulckDraw II routines 16-233

$2E04 SetPenMode
Set.s the current pen mode to a specified pen mode, as shown in Table 16-9.

Parameters

Stack before call

previous contents

penMode

Stack after call

Word-INTEGER; new pen mode (see Table 16-9)

f-SP

I prevtous contents If- SP

Errors None

C extern pascal void SetPenMode (penMode)

Word penMode ;

Pen mod~c;

Table 16-9 shows the available pen modes. Each 1 and O is the value of a bit in a
pixel.

•:• Note: Special text modes are also available. See Table 16-10 in the section
"SetTextMode" in this chapter for those modes.

16-234 QulckDraw II routines

Table 16-9
Pen modes

Integer

$0000
$8000

$0001
$8001

$0002
$8002

$0003
$8003

Name

modeCopy
notCopy

modeOR
notOR

modeXOR
notXOR

modeBIC
notBIC

Description

Copy source (or not source) to destination. modeCopy is the typical
drawing mode. For text, the fully colored text pixels (both foreground and
background) are copied into the destination.

modeCopy

Destination 0
1

Pen

0 1

0 1
0 1

notCopy

Destination 0
1

Pen

0 1

1 0
1 0

Overlay (OR) source (or not source) and destination. Use modeOR to
nondestructively overlay new images on top of existing images; use notOR to
overlay inverted images. For text, the fully colored text pixels (both
foreground and background) are ORed with the destination.

modeOR

Destination 0
1

Pen

0 1

0 1
1 1

notOR

Destination 0
1

Pen

0 1

1 0
1 1

Exclusive or (XOR) pen with destination. Use these modes for cursor drawing
and rubber-banding. If an image is drawn in XOR mode, the appearance of
the destination at the image location can be restored by drawing the image
again in XOR mode. For text, the fully colored text pixels (both foreground
and background) are XORed with the destination.

modeXOR

Destination 0
1

Pen

0 1

0 1
1 0

notXOR

Destination 0
1

Pen

0 1

1 0
0 1

Bit Clear (BIC) pen with destination ((NOT pen) AND destination). Use this
mode to explicitly erase (turn ofO pixels, often prior to overlaying another
image. You can use notBIC to display the intersection of two images. For
text, the fully colored text pixels (both foreground and background) are
BICed with the destination.

modeBIC

Destination 0
1

Pen

0 1

0 0
1 0

notBIC

Destination 0
1

Pen

0 1

0 0
0 1

QulckDraw II routines 16-235

$3004 SetPenPat
Sets the current pen pattern to a specified pen pattern.

Parameters

Stack before call

previous contents

patternPtr

Stack after call

Long-POINTER to pattern

~SP

previous contents I
--------~ SP

Errors None

C extern pascal void SetPenPat (patternPtr)

Pattern patternPtr ;

16-236 QuickDraw II routines

$2C04 SetPenSize
Sets the current pen size to a specified pen size.

Parameters

Stack before call

previous contents

penWidth

penHeight

Word-INTEGER; width of pen in pixels

Word-INTEGER; height of pen in pixels

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetPenSize (penWidth ,penHeight)

Word penWidth;

Word penHeight;

QulckDraw II routines 16-237

$2A04 Set PenState
Sets the pen state in the GrafPort to specified values.

Parameters

Stack before call

previous contents

penStatePtr

Stack after call

Long-POINTER to pen state record (see Figure 16-38)

f- SP

previous contents I
-------- f- SP

Errors None

C extern pascal void SetPenState (penStatePtr)

PenStatePtr penStatePtr ;

Pen state record
The record pointed to by penStatePtris formatted as shown in Figure 16-38.

Offset Field -----$0
l

2
p sPnSize

3
41---------i

5
psPnMod e

>--------<
6

' '

25

H: psPnPot :

26

' ' ' psPnMask '

2E i i
Figure 16-38
Pen state record

Long-POINT specifying pen size

Word-Pen mode

32 bytes-Pen pattern

8 bytes-Pen mask

16-238 QuickDraw II routines

$3E04 SetPicSave
Sets the picSave field in the GrafPort to a specified value.

Warning
This is an internal routine that should not be used by application programs.

Parameters

Stack before call

previous contents

-- picSaveValue

Stack after call

Long-New value for picSave field

f- SP

prevtous contents '
--------f-SP

Errors None

C extern pascal void SetPicSave(picSaveValue)

Longint picSaveValue;

QuickDraw II routines 16-239

$4204 SetPolySave
Sets the polySave field in the GrafPort to a specified value.

Warning
This Is an Internal routine that should not be used by application programs.

Parameters

Stack before call

previous contents

-- polySaveValue Long-New value for polySave field

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetPolySave (polySaveValue)

Longint polySaveValue ;

16-240 QuickDraw II routines

$1804 SetPort
Makes a specified port the current GrafPort.

Parameters

Stack before call

previous contents

portPtr

Stack after call

Long- POINTER to port

f-SP

previous contents I
-------- f-SP

Errors None

C e xtern pascal void SetPort (portPt r)

GrafPortPtr portPtr ;

QulckDraw II routines 16-24 1

$1D04 SetPortloc
Sets the current port's loclnjo record to specified location information.

Parameters

Stack before call

previous contents

loclnjoPtr Long-POINTER to location information

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal vo i d SetPortLoc (locinfoPtr)

LocinfoPtr locinfoPtr ;

16-242 QuickDraw II routines

$1F04 SetPortRect
Sets the current GrafPort's port rectangle to the specified rectangle.

Parameters

Stack before call

previous contents

rectPtr Long-POINTER to RECT defining rectangle

f-SP

Stack after call

previous contents I
------ -- f- SP

Errors

C

None

extern pascal void SetPortRect (r ectPtr)

Rect *rectPtr;

QulckDraw II routines 16-243

$2104

Parameters

Set PortSize
Changes the size of the current GrafPort's port rectangle. The routine does not affect
the pixel image; it just changes the active area of the GrafPort. Normally, the call is
made only by the Window Manager.

Stack before call

previous contents

portWidth

portHeight

Word-INTEGER; width of active area in pixels

Word-INTEGER; height of active area in pixels

f-SP

Stack after call

previous contents I
------ - - f- SP

Errors None

C e xt ern pasca l v oid SetPortSize (portWidth , portHeight)

Wo rd port Width ;

Word port Height ;

16-244 QuickDraw II routines

$8204 SetPt
Sets a point to specified horizontal and vertical values.

Parameters

Stack before call

previous contents

-- srcPtPtr

h

V

Stack after call

--· Long-POINTER to POINT

Word-INTEGER; horizontal value of point

Word-INTEGER; vertical value of point

~SP

previous contents '
--------~SP

Errors

C

None

extern pas cal void SetPt (srcPtPtr , h , v)

Point *srcPtPtr ;

Integer h ;

Integer v ;

QuickDraw II routines 16-245

$8704

Parameters

SetRandSeed
Sets the seed value for the random number generator. The algorithm uses a 32-bit
seed to produce a 16-bit random number. See the section "Random" in this chapter.

Stack before call

previous contents

randomSeed Long-LONGINT; seed value

~SP

Stack after call

previous contents I
--------~ SP

Errors None

C extern pascal void SetRandSeed(randomSeed)

Longint randomSeed;

16-246 QuickDraw II routines

$4A04 SetRect
Sets a specified rectangle to specified values.

Parameters

Stack before call

previous contents

-- rectPtr

left

top

right

bottom

Stack after call

--· Long-POINTER to space for RECT defining rectangle to be set

Word-INTEGER; left X coordinate for rectangle

Word-INTEGER; top Y coordinate for rectangle

Word-INTEGER; right X coordinate for rectangle

Word-INTEGER; bottom Y coordinate for rectangle

f-SP

previous contents I
--------- f- SP

Errors

C

None

extern pascal void SetRect (rectPtr ,left , top , r ight ,bottom)

Rect *rectPtr ;

Integer

Integer

Integer

Integer

left ;

top ;

right ;

bottom ;

QuickDraw II routines 16-247

$6804

Parameters

SetRectRgn
Destroys previous region information by setting a specified region to a specified
rectangle. If the inputs do not describe a valid rectangle, the region is set to the
empty region. If the original region was not rectangular, the region is resized.

Stack before call

previous contents

-- rgnHandle

left

top

right

bottom

--· Long-HANDLE to region being set

Word-INTEGER; left X coordinate for rectangle

Word-INTEGER; top Y coordinate for rectangle

Word-INTEGER; right X coordinate for rectangle

Word-INTEGER; bottom Y coordinate for rectangle

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Memory Manager errors Returned unchanged

C extern pascal void SetRectRgn(rgnHandle,left,top,right,bottom)

RgnHandle rgnHandle;

Integer left ;

Integer top;

Integer right;

Integer bottom;

16-248 QuickDraw II routines

$4004 SetRgnSave
Sets the rgnSave field in the Grafi>ort to a specified value.

Warning

This Is an Internal routine that should not be used by application programs,

Parameters

Stack before call

previous contents

-- rgnSaveValue Long-HANDLE; new value of rgnSave field

(-SP

Stack after call

previous contents I
-------- (- SP

Errors None

C extern pascal void SetRgnSave (rgnSa v eValue)

Handle rgnSaveVa l ue;

QuickDraw II routines 16-249

$1204 SetSCB
Sets the SCB (scan line control byte) to a specified value.

Parameters

Stack before call

previous contents

scanline

newSCB

Word-INTEGER; scan line whose SCB is to be set

Word-INTEGER; new value for SCB

~SP

Stack after call

previous contents I
--------~SP

Errors $0452 badScanLine Invalid scan line number; 0 to 199 are valid

C extern pascal void SetSCB (s canLine , newSCB)

Word scan Line ;

Word newSCB;

16-250 QulckDraw II routines

$3804 SetSolidBackPat
Sets the background pattern to a solid pattern using a specified color. Only an
appropriate number of bits in colorNum are used. If the port SCB indicates 320
mode, four bits are used; if it indicates 640 mode, two bits are used.

Parameters

Stack before call

previous contents

colorNum

Stack after call

Word-INTEGER; new color value

~SP

previous contents I
-------- ~SP

Errors None

C extern pascal void SetSolidBackPat (colorNum)

Word colorNum ;

QulckDraw II routines 16-25 1

$3704

Parameters

SetSolidPenPat
Sets the pen pattern to a solid pattern using the specified color. Only an appropriate
number of bits in colorNum are used. If the port SCB indicates 320 mode, four bits
are us<;!d; if it indicates 640 mode, two bits ~re used.

Stack before call

previous contents

colorNum Word-INTEGER; new color value

f-SP

Stack after call

previous contents I
- ----- - - f- SP

Errors None

C extern pascal void SetSolidPenP at (colorNum)

Word colorNum ;

16-252 QuickDraw II routines

$9E04 SetSpaceExtra
Sets the spFxtra field in the GrafPort to a specified value. The spExtra field is used by
programs that are trying to justify text to a left and right boundary. When the spExtra
field is nonzero, its value is added to the width of each space printed in a string.

Important
SetSpaceExtra uses FIXED values. You can use the Integer Math Tool Set
routine FixRatio to convert values to FIXED values.

Parameters

Stack before call

previous contents

spaceExtra

Stack after call

Long-FIXED; new value for spFxtra field

f- SP

previous contents '
--------f-SP

Errors None

C extern pascal void SetSpaceExtra(spaceExtra)

Fixed spaceExtra;

A justifying example
You want to display the words a quick brown fox and left- and right-justify them in a
rectangle that measures 200 pixels across. You measure the string and find it to be
193 pixels long. The string has 3 spaces between words, so you divide 3 into the 7
pixels remaining (200 - 193 = 7). Thus, you set spFxtra to 2 1/ 3 (7 + 3 = 2 1/ 3).

QuickDraw II routines 16-253

$8D04

Parameters

SetStd Pro cs
Sets up a specified record of pointers for customizing QuickDraw II operations. At the
time of publication, more details were unavailable.

Stack before call

previous contents

- - stdProcRecPtr Long-POINTER to stdProcs record

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetStdProcs(stdProcRecPtr)

QDProcsPtr stdProcRecPtr ;

16-254 QulckDraw II routines

$4804 SetSysField
Sets the sysField field in the GrafPort to a specified value.

Warning

This Is an Internal routine that should not be used by application programs.

Parameters

Stack before call

previous contents

-- sysFieldValue

Stack after call

Long-New value for sysField field

previous contents I
-------- f- SP

Errors None

C extern pascal void SetSysField (sysFieldValue)

Longint sysFieldValue;

QuickDraw II routines 16-255

$8204

Parameters

SetSysFont
Sets a specified font as the system font. The default system font is used unless this call
is made. A handle to the system font is placed in the JontHandle field of each
GraEPort when it is opened or initialized.

Stack before call

previous contents

JontHandle Long-HANDLE to font that will be system font

<-SP

Stack after call

previous contents I
-------- (- SP

Errors None

C extern pasca l void SetSysFont (fontHa ndle)

FontHndl font Handle ;

16-256 QulckDraw II routines

$9A04 SetTextFace
Sets the text face to a specified value. Up to 16 operations on the text are possible.
Each bit in textFace represents a different face, as shown in Figure 16-39.

Parameters

Stack before call

previous contents

textFace Word-INTEGER; text face (see Figure 16-39)

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetTextFace (textFace)

Te xt Sty le text Face ;

QuickDraw II routines

(continued)

16-257

Text face flag
The bit values for the textFace parameter are shown in Figure 16-39.

Important
Shadow, outline, and Italic styles are available only If QulckDraw II Auxiliary has
been loaded and started up. Also, fonts that have a descent value of less than
2 wlll not be underlined.

l

Reserved; set to O J

Figure 16-39
Text face flag

Underline= 1

Italic= l

Bold= l

16-258 QuickDraw II routines

$9C04

Parameters

SetTextMode
Sets the text mode to a specified value. There are eight text-only modes (four modes
and their opposites), as shown in Table 16-10. The fastest modes are the modes that
only transfer the foreground to the destination. The fastest of the foreground modes
are modeForeOR and modeForeXOR; modeForeBIC is almost as fast, and
modeForeCOPY is the slowest.

In addition to the text-only modes, the pen modes apply to text. See the section
"SetPenMode" in this chapter.

Stack before call

prevtous contents

textMode Word-INTEGER; text mode (see Table 16-10)

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetTextMode (textMode)

Word textMode ;

QulckDraw II routines

(continued)

16-259

Text modes

The modes shown in Table 16-10 are used only for text. They apply when drawing
from a one-bit-per-pixel world to a two- or four-bit-per-pixel world. You need this
routine only when drawing from the font to a destination pixel map.

Table 16-10
Text-only modes

Integer Name

$0004 modeForeCopy

$8004 notFo r eCOPY

$0005 modeForeOR

$8005 notForeOR

$0006 modeForeXOR

$8006 n otForeXOR

$0007 modeForeBIC

$8007 notForeBIC

Description

Copies only the foreground pixels into the
destination; background pixels are not altered

Same as modeForeCopy, except that foreground
pixels are turned to background pixels and
background pixels are turned to foreground pixels
before the operation is performed

ORs only the foreground pixels into the destination;
background pixels are not altered

Same as modeForeOR, except that foreground pixels
are turned to background pixels and background
pixels are turned to foreground pixels before the
operation is performed

XORs only the foreground pixels into the
destination; background pixels are not altered

Same as modeForeXOR, except that foreground
pixels are turned to background pixels and
background pixels are turned to foreground pixels
before the operation is performed

BICs only the foreground pixels into the destination;
background pixels are not altered

Same as modeForeBIC, except that foreground
pixels are turned to background pixels and
background pixels are turned to foreground pixels
before the operation is performed

16-260 QuickDraw II routines

$D204 SetTextSize
Sets the txSize field of the GrafPort to a specified value.

Parameters

Stack before call

previous contents

textSiz e

Stack after call

Word-INTEGER; value for txSize field

f- SP

previous contents I
-------- f- SP

Errors None

C extern pascal void SetTextSize (textSize)

Word textSize;

QulckDraw II routines 16-261

$4604

Parameters

SetUserField
Sets the userFteld field in the GrafFort to a specified value. Your application can
attach data to a GrafPort by using this field as a pointer to some other data area.

Stack before call

previous contents

-- userFieldValue Long-New value for userFteld field

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetUserField (userFieldValue)

Longint userFieldValue ;

16-262 QuickDraw II routines

$C804 SetVisHandle
Sets the visRgn field in the GrafPort to a specified value.

Parameters

Stack before call

previous contents

rgnHandle

Stack after call

Long- HANDLE to visible region

f-SP

previous contents '
-------- f- SP

Errors None

C extern pascal void SetVisHandle (r g nHandle)

RgnHandle rgnHandle ;

QuickDraw II routines 16-263

$B404

Parameters

SetVisRgn
Copies a specified region into the visible region (but does not change the visRgn field
of the GrafFort) .

Stack before call

previous contents

rgnHandle Long-HANDLE to region

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

$9104

Parameters

Errors

C

None

extern pascal void SetVisRgn (rgnHandle)

RgnHandle rgnHandle ;

ShowCursor
Shows the cursor by incrementing the cursor level (if the level is already 0, it is not
incremented). A cursor level of O indicates the cursor is visible; a cursor level of less
than O indicates the cursor is not visible.

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pasca l void ShowCursor()

16-264 QuickDraw II routines

$2804

Parameters

Errors

C

$3904

Parameters

ShowPen
Increments the pen level. A positive pen level indicates that drawing will occur; a
negative pen level indicates that drawing will not occur.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void ShowPen ()

Solid Pattern
Sets a specified pattern to a solid pattern using a specified color. Only an appropriate
number of bits in colorNum are used. If the port SCB indicates 320 mode, four bits
are used; if it indicates 640 mode, two bits are used.

Stack before call

previous contents

colorNum

patternPtr

Stack after call

Word-INTEGER; new color value

Long-POINTER to pattern

f- SP

previous contents I
---- - ---- f- SP

Errors None

C extern pascal void SolidPattern (colorNum, p a tternPtr)

Word colorNum ;

Pattern patternPtr ;

QuickDraw II routines 16-265

$AD04

Parameters

StringBounds
Puts the string bounds rectangle of a specified Pascal-type string into a specified
buffer.

Stack before call

previous contents

stringPtr

resultPtr

Stack after call

Long-POINTER to Pascal-type string

Long-POINTER to space for RECT defining rectangle

f- SP

previous contents I
--------- f- SP

Errors None

C extern pascal void StringBounds(stringPtr,resultPtr)

Pointer stringPtr;

Rect *resultPtr;

16-266 QulckDraw II routines

$A904 StringWidth
Returns the sum of all the character widths, in pixels (pen displacements), of a
specified Pascal-type string. This would be the pen displacement if the string were to
be drawn.

Parameters

Stack before call

previous contents

wordspace

stringPtr

Stack after call

previous contents

string Width

Errors None

Word-Space for result

Long-POINTER to Pascal-type string

f- SP

Word-INTEGER; width of string in pixels

f-SP

C e xtern pascal Integer StringWidth (stringPtr)

Pointer stringPtr ;

Quic kDraw II routines 16-267

$8104

Parameters

SubPt
Subtracts the source point from the destination point and leaves the result in the
destination point. For example, a source point of (1,2) and a destination point of
(10,20) result in a destination point of (9, 18).

Stack before call

previous contents

srcPtPtr

destPtPtr

Stack after call

Long- POINTER to POINT

Long- POINTER to POINT used as source and destination

~SP

previous contents I
-------- ~SP

Errors

C

16-268

None

extern pascal void SubPt (srcPtPtr , destPtPtr)

Point *srcPtPtr ;

Point *destPtPtr ;

QuickDraw II routines

$AF04 TextBounds
Puts the character bounds rectangle of specified text into a specified buffer.

Parameters

Stack before call

previous contents

- - textPtr --· Long-POINTER to text

textlength

-- resultPtr --·

Word-INTEGER; length of text in bytes

Long-POINTER to space for RECT defining rectangle

~SP

Stack after call

previous contents I
--------~SP

Errors None

C e xtern pascal void TextBounds(textPtr , textLength , res ultPtr)

Pointer textPtr ;

Word text Length ;

Rect *resultPtr ;

QulckDraw II routines 16-269

$AB04 TextWidth
Returns the character width, in pixels (pen displacement), of specified text.

Parameters

Stack before call

previous contents

wordspace

-- textPtr

textlength

Stack after call

prev.ious contents

text Width

Errors None

--·

Word-Space for result

Long-POINTER to text

Word-INTEGER; length of text in bytes

~SP

Word-INTEGER; width of text in pixels

~SP

C e xtern pascal Integer Te xtWidth (textPtr , textLength)

Poi nter textPtr ;

Wo rd text Length ;

16-270 QulckDraw II routines

$4E04 UnionRect
Calculates the smallest rectangle that contains both source rectangles and places the
result in a destination rectangle.

Parameters

Stack before call

previous contents

-- rectlPtr --· Long-POINTER to first source rectangle

-- rect2Ptr --· Long-POINTER to second source rectangle

-- unionRectPtr --· Long-POINTER to destination rectangle

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void UnionRect (rectlPtr , rect2Ptr , unionRectPtr)

Rect *rectlPtr;

Rect *rect2Ptr ;

Rect *unionRectPtr ;

QuickDraw II ro utines 16-271

$7204

Parameters

UnionRgn
Calculates the smallest region that contains every point that is in either source region
and places the result in a destination region. The destination region (which may be
one of the source regions) must already exist; UnionRgn does not allocate it.

If both regions are empty, the destination is set to an empty region.

Stack before call

previous contents

-- rgn1Handle -- Long- HANDLE to one source region

-- rgn2Handle --· Long- HANDLE to another source region

- - unionRgnHandle --· Long-HANDLE to destination region

~SP

Stack after call

previous contents I
-------- ~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void UnionRgn (rgnlHandle , rgn2Handle , unionRgnHandle)

16-272

RgnHandle

RgnHandle

RgnHandle

QuickDraw II routines

rgnlHandle ;

rgn2Handle ;

unionRgnHandle ;

$7404 XorRgn
Calculates the difference between the union and the intersection of two regions and
places the result in a destination region. The destination region (which may be one of
the source regions) must already exist; this routine does not allocate it.

If the regions are not coincident, the destination is set to an empty region.

Parameters

Stack before call

previous contents

- - rgn1Handle --· Long-HANDLE to one source region

-- rgn2Handle --· Long- HANDLE to another source region

- - xorRgnHandle

Stack after call

--· Long-HANDLE to destination region

~SP

previous contents '
---- - --- ~SP

Errors Memory Manager errors Returned unchanged

C extern pascal void XorRgn (rgn1Handle , rgn2Han d le , x orRgnHand le)

RgnHandle

RgnHandle

RgnHandle

rgnlHandle ;

rgn2Handle ;

xo rRgnHandle ;

QuickDraw II routines 16-273

QuickDraw II summary
This section briefly summarizes the constants, data structures, and tool set error codes
contained in QuickDraw II.

Important

These definitions are provided In the appropriate Interface file.

Table 16- 11
QulckDraw II constants

Name Value Description

Color data
table320 $32 320 color table
table640 $32 640 color table

Graf Port sizes
maskSize $08 Mask size
locSize $10 Loe size
patsize $20 Pattern size
pnStateSize $32 Pen state size
portSize $AA Size of Grafport

Color masks
blueMask $GOOF Mask for blue nibble
greenMask $00FO Mask for green nibble
redMask $0FOO Mask for red nibble

Font flags
widMaxSize $0001 Non proportional spacing
zeroSize $0002 Numeric spacing

Master colors
black $0000 Works in 320 and 640 modes
blue $GOOF Works in 320 and 640 modes
darkGreen320 $0080 Works in 320 mode
green320 $00EO Works in 320 mode
green640 $00FO Works in 640 mode
lightB1ue320 $04DF Works in 320 mode
purple320 $072C Works in 320 mode
darkGray320 $0777 Works in 320 mode
periwinkleB1ue320 $078F Works in 320 mode
brown320 $0841 Works in 320 mode
lightGray320 $0CCC Works in 320 mode
red320 $0DOO Works in 320 mode

16-274 Chapter 16: QuickDraw II

Table 16-11 (continued)
QuickDraw II constants

Name

Master colors
lilac320
red640
orange320
flesh320
yellow
white

Pen modes
modeCopy
modeOR
modeXOR
modeBIC
notCopy
notOR
notXOR
notBIC

Pen and text modes
modeForeCopy
modeForeOR
modeForeXOR
modeForeBIC
notForeCOPY

notForeOR

notForeXOR

notForeBIC

Mode for QDStartUp
mode320
mode640

SCB byte masks
colorTable
scbReserved
scbFill
scbinterrupt
scbColorMode

Value

$0DAF
$0FOO
$0F70
$0FA9
$0FFO
$0FFF

$0000
$0001
$0002
$0003
$8000
$8001
$8002
$8003

$0004
$0005
$0006
$0007
$8004

$8005

$8006

$8007

$00
$80

$OF
$10
$20
$40
$80

Description

Works in 320 mode
Works in 640 mode
Works in 320 mode
Works in 320 mode
Works in 320 and 640 modes
Works in 320 and 640 modes

Copy source to destination
Overlay source and destination
XOR pen with destination
Bit Clear pen with destination
Copy (not source) to destination
Overlay (not source) and destination
XOR (not pen) with destination
Bit Clear (not pen) with destination

Copy foreground pixels into destination
OR foreground pixels into destination
XOR foreground pixels into destination
BIC foreground pixels into destination
Turn background to foreground, then copy
foreground pixels into destination
Turn background to foreground, then OR
foreground pixels into destination
Turn background to foreground, then XOR
foreground pixels into destination
Turn background to foreground, then BIC
foreground pixels into destination

320 mode
640 mode

Color table number
Reserved for future use
Fill mode on
Interrupt generated when scan line refreshed
640 mode on

(continued)

QulckDraw II summary 16-275

Table 16-11 (continued)
QulckDraw II constants

Name Value

Text styles
bold.Mask $0001
italicMask $0002
underlineMask $0004
outlineMask $0008
shadowMask $0010

Table 16-12
QulckDraw II data structures

Name Offset

BufDlmRec (buffer sizing record)
maxWidth $0
textBufHeight $2
textBufferWords $4
fontWidth $6

Font (font record)
offseToMF $00
family $02
style $04
size $06
version $08
fbrExtent $QA

FontGlobalsRecord
fgFontID $00
fgStyle $02
fgSize $04
fgVersion $06
fgWidMax $08
fgFBRExtent $QA

FontlnfoRecord
ascent $00
descent $02
widMax $04
leading $06

Description

Mask for bold bit
Mask for italic bit
Mask for underline bit
Mask for outline bit
Mask for shadow bit

Type

Word
Word
Word
Word

Word
Word
TextStyle
Word
Word
Word

Word
TextStyle
Word
Word
Word
Word

Integer
Integer
Integer
Integer

Definition

Application-defined maximum pixel image width
Current text buffer height in pixels
Current width of text buffer in words
Equal to maxFBRExtent used in call

Offset in number of words to Macintosh font part
Font family number
Style font was designed with
Point size of font
Version number of font definition
Maximum horizontal distance, in pixels, to far edge
of any foreground or background pixel of any
character of font

Family number
Style font was designed with
Point size of font
Version number of font definition
Maximum character width of any character in font
Maximum horizontal distance, in pixels, to far edge
of any foreground or background pixel of any
character of font

Number of pixels above base line in font rectangle
Number of pixels below base line in font rectangle
Maximum character width of any character in font
Recommended number of blank pixel rows between
descent of one text line and ascent of the next

16-276 Chapter 16: QulckDraw II

Table 16-12 (continued)
QulckDraw II data structures

Name Offset

Graf Port
portlnfo $00
portRect $10
clipRgn $18
visRgn $1C
bkPat $20
pnLoc $40
pnSize $44
pnMode $48
pnPat $4A
pnMask $6A
pnVis $72
fontHandle $74
fontID $78
fontFlags $7C
tx:Size $7E
tx:Face $80
txMode $82
spExtra $84
chExtra $88
fgColor $8C
bgColor $8E
picSave $90
rgnSave $94
polySave $98
grafFrocs $9C
arcRot $AO
user Field $A2
sysField $A6

Loclnfo
portSCB $00
ptrToP iximage $02
width $06
boundsRect $08

Type

Loclnfo
Rect
RgnHandle
RgnHandle
Pattern
Point
Point
Word
Pattern
Mask
Word
FontHndl
FontID
Word
Integer
TextStyle
Word
Fixed
Fixed
Word
Word
Handle
Handle
Handle
QdProcsPtr
Integer
Longint
Longint

Word
Pointer
Word
Rect

PalntParam (Paln!Plxels parameter block)
ptrToSourceLoclnfo $00 LocinfoPtr
ptrToDestLocinfo $04 LocinfoPtr
ptrToSourceRect $08 RectPtr
ptrToDestPoint $0C PointPtr
mode $10 Word
maskHandle $12 Handle

Definition

Location information
Port rectangle
Handle to clipping region
Handle to visible region
Background pattern
Pen location
Pen size
Pen mode
Pen pattern
Pen mask
Pen visiblility
Handle to font
Font ID
Font flags
Text size
Text face
Text mode
Value of space extra
Value of char extra
Foreground color
Background color
picSave
rgnSave
polySave
Pointer to GrafFrocs record
arcRot
user Field
sysField

SCB byte
Pointer to pixel image
Width
Boundary rectangle

Pointer to source location information
Pointer to destination location information
Pointer to source rectangle
Pointer to destination point
Mode
Handle to clipping region

(continued)

QuickDraw II summary 16-277

Table 16-12 (continued)
QulckDraw II data structures

Name Offset Type Definition

PenState record
psPnSize $00 Point Pen size
psPnMode $04 Word Pen mode
psPnPat $06 Pattern Pen pattern
psPnMask $26 Mask Pen mask

ROMFontRecord
rfFamNum $00 Word Font family number of ROM font
rfFamStyle $02 Word Style of ROM font
rfSize $04 Word Point size of ROM font
rfFontHandle $06 FontHndl Handle to font
rfNamePtr $0A Pointer Pointer to font name
rfFBRExtent $OE Word jbrF.xtent for ROM font

Note: The actual assembly-language equates have a lowercase letter o in front of all of the names given in this
table.

Table 16-13
QulckDraw II error codes

Code Name

$0401 alreadyinitialized
$0402 cannotReset
$0403 not Initialized
$0410 screenReserved

$0411 badRect
$0420 notEqualChunkiness
$0430 rgnAlreadyOpen
$0431 rgnNotOpen
$0432 rgnScanOverflow
$0433 rgnFull
$0440 polyAlreadyOpen
$0441 polyNotOpen
$0442 polyTooBig
$0450 badTableNum
$0451 badColorNum
$0452 badScanLine
$04FF not Implemented

Description

Attempt made to start up QuickDraw II without first shutting it down
Never used
Quickdraw II not initialized
Memory Manager reported that screen memory (bank $El from
$2000 to $9FFF) is already owned by someone else
Invalid rectangle specified
Source and destination pixels not the same type
Region already being saved in current GrafPort
No region open in current GrafPort
Region scan overflow
Region full
Polygon already open
Polygon not open
Polygon too big
Invalid table number; 0 to 15 are valid
Invalid color number; 0 to 15 are valid
Invalid scan line number; 0 to 199 are valid
Call not implemented

16-278 Chapter 16: QulckDraw II

Chapter 17

QuickDraw II
Auxiliary

QuickDraw II Auxiliary adds features that did not appear in QuickDraw II because
of implementation time or memory space. In particular, QuickDraw II adds the
capability to deal with pictures and allows applications to outline, shadow, and
italicize text.

The picture routines listed in this chapter have QuickDraw II tool set numbers, and
thus could be considered a part of QuickDraw II. However, those routines are not
available unless QuickDraw II Auxiliary has been loaded and started up, so they are
included here.

A preview of the QuickDraw II Auxiliary routines
To introduce you to the capabilities of QuickDraw II, all QuickDraw II routines are
grouped by function and briefly described in Table 16-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the QuickDraw II
routines (discussed in alphabetical order).

17- l

Table 17-1
QuickDraw II Auxiliary routines and their functions

Routine Description

Housekeeping routines
QDAuxBootinit Initializes QuickDraw II Auxiliary; called only by the Tool Locator-must not be

QDAuxStartup
QDAuxShutDown
QDAuxVersion
QDAuxReset

QDAuxStatus

Auxilliary routines
OpenPicture

PicComment
ClosePicture
DrawPicture

KillPicture
Copy Pixels

Drawicon

WaitCursor

called by an application
Starts up QuickDraw II Auxiliary for use by an application
Shuts down QuickDraw II Auxiliary when an application quits
Returns the version number of QuickDraw II Auxiliary
Resets QuickDraw II Auxiliary; called only when the system is reset-must not be
called by an application
Indicates whether Quick.Draw II Auxiliary is active

Allocates memory for the recording of drawing commands into a picture
definition and returns a handle to the picture
Inserts a specified comment into the currently open picture
Completes the picture definition process begun by an OpenPicture call
Takes the drawing commands recorded in the picture definition, maps them from
the picture frame into a specified destination rectangle, and draws them
Releases all memory occupied by a specified picture
Copies a pixel image from one place to another, stretching or compressing it as
necessary to make the source pixels fit the destination rectangle
Draws a specified icon in a specified mode at a specified location and clips to the
current visible and clipping regions
Changes the cursor to a predefined cursor that looks like a watch

About pictures
A picture, as defined by QuickDraw II, is a record of drawing commands. The
OpenPicture call establishes the picture frame that is used in conjunction with the
destination rectangle to map objects from one space to another when the picture is
drawn.

The mapping occurs as follows: If the picture frame is (0,0,100,100) and the
destination rectangle is (50,50,60,60), a line recorded from (10,10) to (90,90) would
appear from (51,51) to (59,59) when the picture is drawn.

Any text drawn is also scaled by using the picture frame and the destination
rectangle. Using the previous example, a text size of 60 would appear as 6 when the
picture is drawn. If the horizontal and vertical coordinates are not scaled by an equal
amount, the vertical change is used to select the correct size for the font. The actual
scaling of the font is handled by the Font Manager.

17-2 Chapter 17: QulckDraw II Auxiliary

One of the most common uses of pictures is for printing. The Print Manager uses
pictures to record what you want to put on a page, then plays back the picture over
and over again into a band buffer. The band buffer is then printed. Because of this
technique, your application only has to record the drawing commands once; the
print driver can use the resulting picture and deal with the appropriate band buffer.

Another common use of pictures is to pass data back and forth from one application
to another. The picture data type is one of two standard types defined by the Scrap
Manager.

Style modification support
At the time of publication, QuickDraw II provides ROM support for bold and
underlined text, while QuickDraw II Auxiliary supports outlined, shadowed, and
italicized text. Therefore, if your application is using outlined, shadowed, or
italicized text, or if you are allowing the user to choose such style modifications, you
must load and start up QuickDraw II Auxiliary.

QuickDraw II Auxiliary icon record
An icon is a small graphic object that is usually symbolic of an operation or of a
larger entity, such as a document. The QuickDraw II Auxiliary icon record
indicates whether the icon is in color or black and white, the size of the icon, the
height and width of the icon, the icon image, and the mask controlling the
appearance of the icon, as shown in Figure 17-1.

•:• Note: At the time of publication, this record had not been included in the APW
interface file .

Offset Field

so
l

iconType

2
iconSize

3
4

lconHeight
5
6 icon Width
7
8

iconlmoge

iconMask

Flgurel7-l

Word-Bit 15 set to l = color icon
set to O = black and white icon

Word-INTEGER; number of bytes in icon image

Word-INTEGER; height of icon in pixels

Word-INTEGER; width of icon in p ixels

x Bytes-Icon image; iconSize bytes long, each row of pixels is
l + (icon width -1)/2 bytes wide

x Bytes-Icon mask; iconSize bytes long, each row of pixels is
l + (icon width -1)/2 bytes wide

QulckDraw II Auxiliary Icon record
QuickDraw II Auxi lia ry Icon record 17-3

There is also a displayMode word that controls how the iconMask is applied. When
the displayMode word is 0, the icon is copied to the destination through the specified
mask. The displayMode word can also have the values shown in Figure 17-2.

I 1s I 14I13I12I111101 9 1 a 1 7 1 6 1 s 1 41 3 1 2 I 1 1 a 1

Background colo; to

1

]

1 1 J
apply to white part of
black-and-white icons

Foreground color to
apply to black part of
black-and-white icons

Figure 17-2

Reserved; set to 0

offLineBit
AND light-gray pattern to Image being copied= l

Don't AND image = 0

openlconBit
Copy light-gray pattern instead of image = l

Don't copy light-gray pattern = 0

selectedlconBit
Invert image before copying = l

Don't invert image = 0

The disp/ayMode word

All three of the operations in bits 2- 0 can occur at once, and the testing is in the
following order:

1 . Check openlconBit (bit 1). Is it open (set to 1)?

2. Check offLineBit (bit 2). Is it off-line (set to 1)?

3 . Check selectedlconBit (bit 0). Is it selected (set to 1)?

Color is only applied to the black and white icons if bits 15-8 are not all 0. Colored
pixels in an icon are inverted by black pixels becoming white and any other color of
pixel becoming black.

Your application draws the icon by using a Drawicon call. See the section
"Drawlcon" in this chapter.

17-4 Chapter 17: QuickDraw II Auxiliary

Using QuickDraw II Auxiliary
This section discusses how the QuickDraw II Auxiliary routines fit into the general flow
of an application and gives you an idea of which routines you'll need to use under
normal circumstances. Each routine is described in detail later in this chapter.

QuickDraw II Auxiliary depends on the presence of the tool sets shown in Table 17-2
and requires that at least the indicated version of the tool set be present.

Table 17-2
Quick Draw II Auxiliary-other tool sets required

Tool set Tool set Minimum version
number name needed

$0 1 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 QuickDraw II 1.2

In addition, if your application is using the DrawPicture routine, the Font Manager
(tool set number $1B) must be loaded and started up.

The first QuickDraw II Auxiliary call your application must make is QDAuxStartUp.
Conversely, when you quit your application, you must make the QDAuxShutDown
call.

The OpenPicture begins the picture definition process. While OpenPicture is in
effect, QuickDraw II drawing commands and any comments from PicComment calls
are recorded and placed in the picture definition. When your application is through
recording the picture, use the ClosePicture routine to stop the picture definition
process and the DrawPicture routine to draw the picture in the destination rectangle.
Finally, when you are completely through with a picture, you can use the KillPicture
routine to release the memory the picture occupies.

Your application can draw an icon by using a Drawlcon call, produce a cursor that
looks like a watch by using a WaitCursor call, or copy a pixel image from one place to
another by using a CopyPixels call.

Using QuickDraw II Auxiliary 17-5

$0112

Parameters

Errors

C

$0212

Parameters

Errors

C

QDAuxBootlnit
Initializes QuickDraw II Auxiliary; called only by the Tool Locator.

Warning
An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

QDAuxStartUp
Starts up QuickDraw II Auxiliary for use by an application.

Important

Your application must make this call before it makes any other QuickDraw II
Auxiliary calls.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void QDAuxStartUp()

17-6 QulckDraw II Auxiliary housekeeping routines

$0312

Parameters

Errors

C

$0412

Parameters

QDAuxShutDown
Shuts down QuickDraw II Auxiliary when an application quits.

Important
If your application has started up QulckDraw ii Auxiliary, the application must
make this ca ll before it quits,

The stack is not affected by this call. There are no input or output parameters.

None

extern pas ca l void QDAu xS hut Down()

QDAuxVersion
Returns the version number of QuickDraw II Auxiliary.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

f-SP

Word-Version number of QuickDraw II Auxiliary

f-SP

C e xtern pascal Word QDAu xVers i on ()

QuickDraw II Auxiliary housekeeping routines 17-7

$0512 QDAuxReset
Resets QuickDraw II Auxiliary; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$0612 QDAuxStatus
Indicates whether QuickDraw II Auxiliary is active.

Parameters

Stack before call

previous contents

wordspace Word-Space for result

~SP

Stack after call

previous contents

Errors

C

17-8

activeFlag

None

Word-BOOLEAN; TRUE if QuickDraw II Auxiliary active, FALSE if inactive

~SP

extern pascal Boolean QDAuxStatus ()

QuickDraw II Auxiliary housekeeping routines

Parameters

Errors

C

Close Picture
Completes the picture definition process begun by an OpenPicture call.

Important
Calls to OpenPicture and ClosePicture must be balanced; that is, one
ClosePicture call must be made for every OpenPicture cal l.

ClosePicture calls the QuickDraw II routine ShowPen, thus balancing the HidePen call
made by the OpenPicture call.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void ClosePicture ()

QuickDraw II Auxiliary routines 17-9

$0912 CopyPixels
Copies a pixel image from one place to another, stretching or compressing it as
necessary to make the source pixels fit the destination rectangle.

If the destination loclnfo record is the same as the loclnfo record of the current
Grafport, the pixels are also clipped to the Grafport's visible and clipping regions.

Parameters

Stack before call

previous contents

-- srcLocPtr

-- destLocPtr

-- srcRect

-- destRect

xferMode

-- maskRgn

--·

- - ·

--·

--·

--·

Long-POINTER to loclnfo record of source rectangle

Long-POINTER to loclnfo record of destination rectangle

Long-POINTER to RECT defining source rectangle

Long-POINTER to RECT defining destination rectangle

Word-Pen mode

Long-HANDLE to mask region

f-- SP

Stack after call

previous contents I
-------- f-- SP

Errors

C

17-10

None

e xtern pascal void CopyPixel s(srcLoc Ptr , destLocPtr , srcRect , destRect ,

x ferMode , maskRgn)

LoclnfoPtr

LoclnfoPtr

Rect *s r cRect ;

Rect *destRect ;

srcLocPtr ;

destLocPtr ;

Word x ferMode ;

RgnHandle maskRgn ;

QuickDraw II Auxiliary routines

$0Bl2

Parameters

Drawlcon
Draws a specified icon in a specified mode at a specified location and clips to the
current visible and clipping regions. The routine does not contibute to a picture
definition, nor does it print the icon.

The QuickDraw II Auxiliary icon record and display mode word are described in the
section "QuickDraw II Auxiliary Icon Record" in this chapter.

Stack before call

previous contents

-- iconPtr --·

displayMode

Long-POINTER to icon record (see Figure 17-1)

Word-Bit flag defining icon's appearance (see Figure 17-2)

Word-X coordinate of upper left corner of icon xPos

yPos Word-Y coordinate of upper left corner of icon

f-SP

Stack after call

previous contents I
- -------- f- SP

Errors None

C extern pascal void Drawicon(iconPtr , displayMode , xPos , yPos)

Pointer iconPtr ;

Word displayMode ;

Word xPos ;

Word yPos;

QulckDraw II Auxiliary routines 17-11

$BA04

Parameters

DrawPicture
Takes the drawing commands recorded in the picture definition, maps them from the
picture frame into a specified rectangle, and draws them.

Warning

If you call DrawPlcture with the Initial, arbitrarily large clipping region, and the
destination rectangle Is either offset or larger than the picture frame , the
c lipping region might be set to empty and no drawing will be done.

DrawPicture passes any picture comments to a low-level procedure accessed through
the grajProcs field of the GrafPort. For more information, see the section
"PicComment" in this chapter.

Stack before call

previous contents

picHandle Long- HANDLE to picture

destRect

Stack after call

Long-POINTER to RECT defining destination rectangle

f- SP

previous contents I
-------- f-SP

Errors None

C extern pascal void Dr awPict u re (picHandle , destRect)

Handle picHan d le ;

Rect *destRect ;

17-12 QuickDraw II Auxiliary routines

$BB04 Kill Picture
Releases all memory occupied by a specified picture. Use this call only when your
application is completely through with a picture.

Parameters

Stack before call

previous contents

picHandle

Stack after call

Long-HANDLE to picture

f-SP

previous contents I
-------- f- SP

Errors None

C extern pascal void KillPicture (picha nd le)

Handle pichandle ;

Qulc kDraw II Auxilia ry routines 17-13

$B704

Parameters

Open Picture
Allocates memory for the recording of drawing commands into a picture definition,
and returns a handle to the picture.

Warning

A GrafPort's cl ipping reg ion Is Initia lized to an arbitrarily large region. To ensure
that the clipping region is sti ll valld when drawing occurs and the region is
mapped from the picFrame to the destRect, you should always change the
clipping region to a smaller region before call ing OpenPicture.

OpenPicture also calls the QuickDraw II routine HidePen, so no drawing will occur on
the screen while the picture is open.

•:• Note: No drawing will occur unless you call ShowPen just after OpenPicture, or you
call ShowPen without previously balancing it by a call to HidePen.

When a picture is open, the GrafFort's picSave field contains a handle to information
related to the picture definition. If you want to temporarily disable the collection of
routine calls and picture comments, save the current value of picSave and set the field
to NIL; then restore the value when you want to resume the picture definition.

Stack before call

previous contents

longspace

picFrame

Stack after call

previous contents

picHandle

Errors None

Long-Space for result

Long-POINTER to RECT defining picture frame

~SP

Long-HANDLE to picture

~SP

C e xtern p ascal Handle OpenPictu re (picFrame)

Pointer picFrame ;

17-14 QuickDraw II Auxiliary routines

$B804 PicComment
Inserts a specified comment into the currently open picture. An application that
processes the comments must include a procedure to do the processing and store a
pointer to that procedure in the grajProcs field of the GrafPort.

•!• Note: The standard low-level procedure for processing picture comments simply
ignores all comments.

Parameters

Stack before call

previous contents

commentKind Word-Type of comment

dataSize Word-Size of additional data; 0 if none

-- dataHandle --· Long-HANDLE to additional data; NIL if none

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void PicComment (commentKind,dataSize , dataHandle)

Integer

Integer

Handle

comment Kind;

dataSize;

dataHandle ;

QuickDraw II Auxiliary routines 17-15

$0A12

Parameters

Errors

C

WaitCursor
Changes the cursor to a predefined cursor that looks like a watch.

•:• Note: You can restore the standard arrow cursor by making the QuickDraw II call
InitCursor.

A desk accessory or tool set can make this without checking whether QuickDraw II
Auxiliary is active and without checking for errors. If QuickDraw II Auxiliary has not
been loaded and started up, the dispatcher will return an error, but nothing else will
happen.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void WaitCursor()

QuickDraw II Auxiliary summary
QuickDraw II Auxiliary does not contain any predefined constants, data structures, or
error codes.

17-16 QuickDraw II Auxiliary routines

Chapter 18

SANE Tool Set

The Standard Apple Numeric Environment (SANE) is extended-precision IEEE
arithmetic, with elementary functions. It scrupulously conforms to the IEEE standard
754 for binary floating-point arithmetic and to the proposed IEEE standard 854,
which is a radix-independent and word-length-independent standard for floating­
point arithmetic.

SANE provides sufficient numeric support for most applications. It includes

• IEEE types single (32-bit), double (64-bit), and extended (80-bit)

• A 64-bit type for large integer computations, such as those used in accounting

• Fundamental floating-point operations (+ - • / --./ rem)

• Comparisons

• Binary-decimal and float-integer conversions

• Scanning and formatting for ASCII numeric strings

• Logs, trigs, and exponentials

• Compound and annuity functions for financial computations

• A random-number generator

• Functions for management of the floating-point environment

• Other functions required or recommended by the IEEE standard

The SANE Tool Set fully supports the Standard Apple Numeric Environment,
matching the functions of the Macintosh SANE packages, as well as those of the 6502
assembly language SANE software from which it is derived.

18-1

The SANE Tool Set comprises the usual tool set housekeeping routines and the
routines SANEFP816, SANEElems816, and SANEDecStr816 that serve as entry points
for the major pieces of SANE code. Each call to SANEFP816, SANEElems816, or
SANEDecStr816 passes an opword parameter specifying the operation to be
performed. For example, the opword $0206 passed to SANEFP816 indicates "divide
by a value of type single."

This chapter describes only the basic functions of the SANE routines and the
differences between the 6SC816 version and the 6502 version. SANE functions are
completely documented in the Apple Numerics Manual, which you will need if you
use SANE routines in your application.

A preview of the SANE Tool Set routines
To introduce you to the capabilities of the SANE Tool Set, all SANE Tool Set routines
are grouped by function and briefly described in Table 18-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the SANE Tool Set
routines (discussed in alphabetical order).

Table 18-1
SANE Tool Set routines and their functions

Routine Description

Housekeeping routines
SANEBootlnit Initializes the SANE Tool Set; called only by the Tool Locator-must not be called

SANEStartup
SANEShutDown
SANEVersion
SANEReset

SANEStatus

SANE routines
SANEDecStr816
SANEElems816

SANEFP816

by an application
Starts up the SANE Tool Set for use by an application
Shuts down the SANE Tool Set when an application quits
Returns the version number of the SANE Tool Set
Resets the SANE Tool Set; called only when the system is reset-must not be called
by an application
Indicates whether the SANE tool set is active

Contains numeric scanners and formatter
Contains elementary functions, financial functions, and a random-number
generator
Contains basic arithmetic operations, comparsions, conversions, environmental
control, and IEEE auxiliary operations

18-2 Chapter 18: SANE Tool Set

Using the SANE Tool Set
This section discusses how the SANE Tool Set routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The SANE Tool Set depends upon the presence of the tool sets shown in Table 18-2
and requires that at least the indicated version of the tool set be present.

Table 18-2
SANE Tool Set- other tool sets required

Tool set
number

$0 1 #01
$02 # 02

Tool set
name

Tool Locator
Memory Manager

Minimum version
needed

1.0
1.0

The first SANE Tool Set call that your application must make is SANEStartUp.
Conversely, when you quit your application, you must call SANEShutDown.

You can program with the SANE tool set using any assembler that generates code for
the Apple IIGS. The equate file SANE.equs and the macro file M16.SANE help you
use SANE with the Apple IIGS Programmer's Workshop (APW) assembler.

•:• Note: The APW C Compiler fully supports SANE and includes C interfaces to all
SANE tool set routines.

The following code for a binary operation illustrates a typical invocation of a SANE
function :

PUSHLONG

PUSHLONG

PUSHWORD

(SANE macro)

<4-byte so u rce ope rand addr e ss>

<4 - b yte destination ope rand a ddress>

<OpWord>

Some SANE operations require different numbers of arguments, some pass 16-bit
integer arguments by value, and some return results in the X, Y, and status registers .

The following example illustrates the use of the numeric scanner and formatter. The
procedure accepts as an argument an ASCII string representing a number of degrees
and returns the trigonometric sine of the argument as a numeric ASCII string. Both
input and output are Pascal strings; that is, byte O gives the length, and byte 1
contains the first character in the string. The caller of the procedure pushes the
address of the input string and performs a JSR to SINE. The procedure overwrites the
input string with the result (whose length may be as large as 80) and dears the stack.
SINE uses SANEFP816, SANEElems816, and SANEDecStr816, which are the three
principal functions in the SANE Tool Set.

Using the SANE Tool Set 18-3

Somewhere early in the program , initialize SANE

Call the Memory Manager to reserve 256 bytes of bank $0 for use

as SANE direct page. #SANEdirectpg is the address of this memory in this example

PUSHWORD #SANEdirectpg

SANEStartUp

Near the end of the program , shut down SANE .

SANEShutDown

Call the Memory Manager to release the memory reserved for the

SANE direct page (often by releasing ALL reserved memory)

Procedure SINE (vars : DecStr)

SINE

18-4

s :

index

theDec

vp :

theForm

X :

const

ENTRY

PLA

STA

PLA

STA

PLA

STA

LDA

STA

I/0 string

16-bit integer index

Decimal record

Boolean for validprefix

decform record

Extended temporary

Extended constant= pi/180

return

sAdr

sAdr+2

#1

index

PUSHLONG sAdr

PUSHLONG #index

PUSHLONG #theDec

PUSHLONG #vp

FPSTR2DEC

Chapter 18: SANE Tool Set

Save return address

Address of s - > sAdr

1 - > index

s - > theDec

PUSHLONG

PUSHLONG

FDEC2X

PUSHLONG

PUSHLONG

FMULX

PUSHLONG

FSINX

PUSHLONG

PUSHLONG

PUSHLONG

FX2DEC

PUSHLONG

PUSHLONG

PUSHLONG

FDEC2STR

LDA

PHA

RTS

index ds

vp ds

eonst de

X ds

theForm de

theDee ds

retu rn ds

sAdr ds

#theDee

#x

#eonst

#x

#x

#theForm

#x

#theDee

#the Form

#theDee

sAdr

return

2

2

theDee -> x

Convert to radians : x*eonst -> x

Sin (x) - > x

x -> theDee

theDee -> s

h 'AE CB E9 94 12 35 FA BE F9 3F '

10

Constant pi/180

i ' l , 10 '

33

2

4

First style , then digits

Sign , exponent , length , ASCII (2 +2+1+28)

Using the SANE Tool Set 18-5

Performance characteristics and limitations

Your application must preserve bytes 24 to 29 (decimal) of the SANE direct page
between calls to SANE. Those 6 bytes hold the floating-point environment and halt
vector. The remainder of the SANE direct page is scratch space used only during
SANE execution and does not need to be preserved across calls to SANE. The space
is thus available to the application.

Warning
Future implementations of SANE on the IIGS may not store the floating-point
environment and halt vector on the direct page. If you access these variables
directly, you may forfeit upward compatibility. Always access these variables
only through SANE calls.

Except for the SANEVersion routine, SANE Tool Set routines remove all arguments
from the stack and return no results on the stack. Temporary stack growth during calls
does not exceed 40 bytes (50 for elementary function calls).

The SANE Tool Set conforms to the general tool set rules for management of the CPU
registers, modes, and busy flag. However, SANE never returns tool set error codes;
all floating-point errors are handled internally by setting exception fl ags (see the
Apple Numerics Manual) .

Typical timings, based on a few sample values, are as follows:

0.5 - 1.2 ms
1.0 - 5.0 ms
1.9 - 5.2 ms
0.7 - 1.4 ms
0.8- 1.0 ms
2.4 - 5.8 ms
0.8 - 3.5 ms
50-100 ms

Add, subtract
Multiply
Divide
Scanner
Formatter
Extended-to-decimal
Decimal-to-extended
Trigonometric, exponential, logarithmic

18-6 Chapter 18: SANE Tool Set

Differences between 65C8 l 6 and 6502 SANE
The 65C816 version of SANE differs from the 6502 version in several ways. First, all
address parameters in the 65C816 are 4 bytes instead of 2 bytes. Another difference
is that, if you are not using macro calls, you access the routines via the tool set
dispatcher rather than via a JSR statement. Thus, invocations end with

LOX #SANEtsNum + FuncNum*256

J SL $El0000

instead of

JSR <xx 6502>

If you are using the macro calls, you don't see this difference, because the macro
automatically expands into the correct version of the call.

The low-order bytes of the X and Y registers return information as documented in
Part II of the Apple Numerics Manual. The high-order byte of X duplicates the
contents of the low-order byte of Y. The high-order byte of Y is undefined.
Figure 18-1 shows the relationship between the return information in 6502 registers
and that in 65816 registers .

r--- High-order byte

I 65C816 Y
register

?

6502 Y
register

Low-order byte

Figure 18-1
SANE return information

65C816 X
register

6502 Y
register

6502 X
register

_J

Differences between 65C8 l 6 and 6502 SANE 18-7

The Remainder call uses the N flag from the Processor Status register and both bits 7
and 15 of the X register to return the sign of the quotient. The low 7 bits of X contain
the absolute value of the quotient.

The final difference between the 65816 and 6502 versions lies in the halt mechanism.
When a halt occurs in 65816 SANE, the input parameters and SANE opcode are
located in the SANE direct page, as shown in Figure 18-2. For one- and two-argument
calls, C holds the address of DST. For two-argument calls, B holds the address of
SRC. For binary-to-decimal conversion, A holds the address of the decimal record,
B holds the address of the binary value, and C holds the address of the decform
record .

Important
Halts occur only on calls to SANEFP8 l 6. SANEElems8 l 6 stimulates the halt
mechanism only through the procexit call. SAN EDecStr8 l 6 makes no calls to
SANEFP8 l 6 and therefore never stimulates the halt mechanism.

The halt vector is the address of a halt-handling routine stored as a 4-byte address.
The SetHaltVector routine expects the 4-byte halt vector to be passed by value on the
stack. GetHaltVector returns a 3-byte halt vector in the X and Y registers. X contains
the two low bytes (first and second) of the halt vector, and Y contains the second and
third bytes; the second byte of the halt vector occurs in both the X and Y registers.

18-8 Chapter 18: SANE Tool Set

Figure 18-2 illustrates how X and Y return the halt vector.

Offset Field

2 return addresses

$0

l

2
3

4

5

6

7

8

9

Caller's direct page

OA
OB
QC

OD
OE

OF

10

11

12

13

14

15

16

17

18

19

lA

lB

lC

lD

lE

lF

20

21

22

Figure 18-2

Caller's data bank

Opword

"C " address

"B" address

"A " address

Halt vector

Environment

Pending exceptions

Pending X-lo

Pending X-hl , Y-lo

Pending Y-hi

SANE direct page on halt

Differences between 65C8 l 6 and 6502 SANE 18-9

When a halt occurs, the 65816 SANE executes a JSL to HaltVector. The halt handler
can continue execution as if no halt had occurred by executing RTI.

Important

SANE Is not reentrant! Your application can't call SANE within the halt handler.
During the halt, the direct page can't be altered, and making a SANE call would
alter the direct page.

After return to the SANEFP816 code, SANE uses the A register, not pending
exceptions, to set the final floating-point exceptions. Execute LDA
PendingExceptions at the end of the halt handler to ensure that the exceptions from
the current call are handled correctly.

Warning
Pending exceptions is a sum of the five exception constants, represented as an
integer from O to 31. Unpredictable results occur if the A register contains a
value outside th is range when your application exits the halt handler.

18-10 Chapter 18: SANE Tool Set

$010A SANEBootlnit
Initializes the SANE Tool Set; called only by the Tool Locator.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

SANE Tool Set housekeeping routines 18-11

$020A

Parameters

SANEStartUp
Starts up the SANE Tool Set for use by an application. This routine clears the SANE
environment word, installing the default settings of round-to-nearest, round-to­
extended-precision, all exceptions clear, and all halts disabled (these terms are
defined in the Apple Numerics Manual).

Important

If you are using assembly language, your application must make this call before
making a ny other SANE calls. If you are using APW C, the ca ll is made
automatica lly.

SANEStartUp also sets the halt vector to 0. As with 6502 SANE, halts remain
inoperative until the application both enables halts and also gives the halt vector a
nonzero address.

The dPageAddr parameter is the address of one page (256 bytes) in bank $0 that your
application makes available to the SANE Tool Set for its use.

Stack before call

previous contents

dPageAddr Word-Bank $0 starting address of one page of direct-page space

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C The call is made automatically in APW C.

18-12 SANE Tool Set housekeeping routines

$030A

Parameters

Errors

C

$040A

Parameters

SAN EShutDown
Shuts down the SANE Tool Set.

Important

If your application has started up the SANE Tool Set, the application must make
this ca ll before it quits.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void SANEShutDown ()

SAN EVersion
Returns the version number of the SANE Tool Set.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word- Space for result

~SP

Word- Version number of SANE Tool Set

~SP

C extern pascal Word SANEVersion ()

SANE Tool Set housekeeping routines 18- 13

$050A SANE Reset
Resets the SANE Tool Set; called only when the system is reset.

Warning

An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$060A SANEStatus
Indicates whether the SANE Tool Set is active.

Parameters

Stack before call

previous contents

words pace Word-Space for result

~SP

Stack after call

previous contents

Errors

C

18-14

activeFlag

None

Word-BOOLEAN; TRUE if SANE Tool Set active, FALSE if inactive

~SP

extern pascal Boolean SANEStatus()

SANE Tool Set housekeeping routines

$0AOA

Parameters

Errors

C

$0BOA

Parameters

Errors

C

$090A

Parameters

Errors

C

SANEDecStr816
Contains numeric scanners and formatter .

See the Apple Numerics Manual for details.

None

extern pascal Void SANEDecStr816 ()

SANEElems816
Contains elementary functions , financial functions, and a random-number
generator.

See the Apple Numerics Manual for details.

None

extern pascal Void SANEElems816 ()

SANEFP816
Contains basic arithmetic operations, comparisons, conversions, environmental
control, and IEEE auxiliary operations.

See the Apple Numerics Manual for details.

None

extern pascal Void SANEFP816()

SANE Tool Set summary
The constants and data structures for the SANE Tool Set are defined in the Apple
Numerics Manual. The SANE Tool Set does not contain any tool set error codes.

SANE Tool Set routines 18-15

Chapter 19

Scheduler

The Scheduler delays activation of a desk accessory or of other tasks until the
resources that the desk accessory or task needs become available. Much of the
system code is not reentrant; that is, the code cannot be called while it is already
executing. For example, if a desk accessory was activated while the system was within
nonreentrant code, the system would most likely fail. To prevent such a situation
from occurring, the Apple IIGS provides a busy flag that the Scheduler can check to
see if a needed resource is busy or available.

If you are writing an application or a desk accessory, you won't need to use the
Scheduler. The only time you need to use the Scheduler is when you are writing one
of the following:

• Your own tool set

• Interrupt handlers that access ProDOS 16 or the tool set routines

For example, an application that performed background printing might need to
access the Scheduler.

A preview of the Scheduler routines
To introduce you to the capabilities of the Scheduler, all Scheduler routines are
grouped by function and briefly described in Table 19-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the Scheduler routines
(discussed in alphabetical order).

19-1

Table 19-1
Scheduler routines and their functions

Routine Description

Housekeeping routines
SchBootlnit Initializes the Scheduler; called only by the Tool Locator-must not be called by an

SchStartUp
SchShutD0wn
Sch Version
SchReset

SchStatus

application
Starts up the Scheduler for use by an application
Shuts down the Scheduler when an application quits
Returns the version number of the Scheduler
Resets the Scheduler; called only when the system is reset-must not be called by an
application
Indicates whether the Scheduler is active

Scheduler queue routines
SchAddTask Adds a task to the Scheduler queue
SchFlush Flushes all tasks in the Scheduler queue-must not be called by an application

Using the Scheduler
This section discusses how the Scheduler routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The Scheduler depends upon the presence of the tool sets shown in Table 19-2 and
requires that at least the indicated version of the tool set be present.

Table 19-2
Scheduler-other tool sets required

Tool set

number

$01 #01

Tool set

name

Tool Locator

Minimum version

needed

1.0

Your application should make a SchStartUp call before making any other Scheduler
calls.

•:• Note: At the time of publication, the SchStartUp call was not an absolute
requirement, because the Tool Locator automatically started up the Scheduler at
boot time. However, you should make the call anyway to guarantee that your
application remains compatible with all future versions of the system.

Your application should also call SchShutDown when the application quits.

19-2 Chapter 19: Scheduler

The Scheduler revolves around the busy flag located at $El/ OOFF. If you wish to
change the state of the busy flag, you should use the routines INCBUSYFLG and
DECBUSYFLG. Those routines are not tool set routines, but are accessed directly
from vectors in bank $El as follows:

INCBUSYFLG
DECBUSYFLG

$El/ 0064
$El/ 0068

When a nonreentrant module is entered, your tool set or interrupt handler should
perform a JSL to INCBUSYFLG in full native mode Ce, m, and x flags all set to 0).
When exiting from the module, the application should perform a JSL to
DECBUSYFLG. DECBUSYFLG decrements the busy flag and executes any tasks
placed in the Scheduler queue with the tool set routine SchAddTask.

Your tool set or interrupt handler should use SchAddTask after it checks the state of
the busy flag. If the flag is set to other than 0, the necessary system resources are not
currently available, and you can add a task to the Scheduler queue by using the
SchAddTask routine.

Note that your application should never call the SchFlush routine.

Using the Scheduler 19-3

$0107

Parameters

Errors

C

$0207

Parameters

Errors

C

SchBootlnit
Initializes the Scheduler; called only by the Tool Locator.

Warning

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

SchStartUp
Starts up the Scheduler for use by an application.

•!• Note: At the time of publication, the SchStartUp call was not an absolute
requirement, because the Tool Locator automatically started up the Scheduler at
boot time. However, you should make the call anyway, to guarantee that your
application remains compatible with all future versions of the system.

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pascal void SchSt a rtUp ()

19-4 Scheduler housekeeping routines

$0307

Parameters

Errors

C

$0407

Parameters

SchShutDown
Shuts down the Scheduler when an application quits .

Important
If your application has started up the Scheduler, the application must make this
call before it quits.

The stack is not affected by this call. There are no input or output parameters.

None

ext ern pascal void SchShutDown()

Sch Version
Returns the version number of the Scheduler.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

f-SP

Word-Version number of Scheduler

f-SP

C extern pascal Word SchVersion()

Scheduler housekeeping routines 19-5

$0507 SchReset
Resets the Scheduler; called only when the system is reset.

Warning

An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$0607 SchStatus
Indicates whether the Scheduler is active.

Parameters

Stack before call

previous contents

wordspace Word-Space for result

f-SP

Stack after call

previous contents

Errors

C

19-6

activeFlag

None

Word-BOOLEAN; TRUE if Scheduler active, FALSE if inactive

f-SP

extern pascal Boolean SchStat us()

Scheduler housekeeping routines

$0907

Parameters

SchAddTask
Adds a task to the Scheduler queue. The queue has space for four items, enough to
support the Desk Manager as well as other small interrupt handlers.

The Scheduler uses a JSL to launch the procedure pointed to by taskPtr. If the task
can't be added to the queue because the queue is already full, onQueueFlag will be
FALSE.

•!• Note: The Scheduler is not designed to support multitasking.

When the busy flag is decremented to 0, the tasks in the queue are executed in the
posted order.

Stack before call

previous contents

wordspace

taskPtr

Stack after call

previous contents

Word-Space for result

Long-POINTER to task to be added

~SP

onQueueFlag Word-BOOLEAN; TRUE if task added to Scheduler's queue,

~ SP FALSE if queue was full

Errors None

C extern pascal Boolean SchAddTask(taskPtr)

VoidProcPtr taskPtr;

Scheduler routines 19-7

$0A07 Schflush
Flushes all tasks in the Scheduler's queue.

Important

An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

Scheduler summary
The Scheduler does not contain any predefined constants, data structures, or tool set
error codes.

19-8 Scheduler routines

Chapter 20

Scrap Manager

The Scrap Manager lets an application handle cutting and pasting. From the user's
point of view, all data that is cut or copied resides in the Clipboard. The Cut
command deletes data from a document and places it in the Clipboard. The Copy
command copies data into the Clipboard without deleting it from the document. A
subsequent Paste command will insert the contents of the Clipboard at a specified
place, whether that place is in the same document or another or in the same
application or another. An application that supports cutting and pasting may also
provide a Clipboard window for displaying the current contents of the scrap; it may
show the Clipboard window at all times or only when requested via the Show (or
Hide) Clipboard command.

•:• Note: The Scrap Manager is intended to transfer limited amounts of data;
attempts to transfer very large amounts of data may fail due to lack of memory.

The nature of the data to be transferred varies according to the application. For
example, in a word processor, the data is text; in a graphics application, it's a
picture. The amount of information retained about the data being transferred also
varies. Between two text applications, text can be cut and pasted without any loss of
information; however, if the user of a graphics application cuts a picture consisting
of text and then pastes it into a word processor document, the text in the picture may
not be editable in the word processor, or it may be editable but not look exactly the
same as in the graphics application. The Scrap Manager allows for a variety of data
types and provides a mechanism whereby applications have some control over how
much information is retained when data is transferred.

The desk scrap is usually stored in memory, but can be stored on the disk (in the file
CLIPBOARD in the SYSTEM subdirectory of the boot volume) if there's not enough
room for it in memory.

•:• Macintosh programmers: The scrap does not have to be in memory when an
application starts or stops.

20-1

A preview of the Scrap Manager routines
To introduce you to the capabilities of the Scrap Manager, all Scrap Manager
routines are grouped by function and briefly described in Table 20-1. These routines
are described in detail later in this chapter, where they are separated into
housekeeping routines (discussed in routine number order) and the rest of the Scrap
Manager routines (discussed in alphabetical order).

Table 20-1
Scrap Manager routines and their functions

Routine Description

Housekeeping routines
ScrapBootinit Initializes the Scrap Manager; called only by the Tool Locator-must not be called

ScrapStartUp
ScrapShutDown
Scrap Version
ScrapReset

ScrapStatus

Sc rap routines
UnloadScrap

LoadScrap
ZeroScrap
PutScrap
GetScrap

GetScrapCount
GetScrapState
GetScrapHandle
GetScrapSize
GetScrapPath
SetScrapPath

by an application
Starts up the Scrap Manager for use by an application
Shuts down the Scrap Manager when an application quits
Returns the version number of the Scrap Manager
Resets the Scrap Manager; called only when the system is reset-must not be
called by an application
Indicates whether the Scrap Manager is active

Writes the desk scrap from memory to the scrap file and releases the memory it
occupied
Reads the desk scrap from the scrap file into memory
Clears the contents of the scrap and increments the scrap count
Appends specified data to the scrap that has the same scrap type as the data
Copies scrap information of the appropriate type to a specified handle, setting
the handle to the correct size
Returns the current scrap count
Returns a flag indicating the current state of the scrap
Returns a copy of the handle for the scrap of a specified type
Returns the size of the specified scrap
Returns a pointer to the pathname used for the Clipboard file
Sets a pointer to the pathname used for the Clipboard file

20-2 Chapter 20: Scrap Manager

Memory and the desk scrap
A large desk scrap can prevent an application from being loaded. If your application
needs to know about whether there's enough room for the desk scrap in memory, you
can set up your application so that a small initial segment of it is loaded. That
segment can contain a Scrap Manager call to get the scrap size.

After a decision is made about whether to keep the scrap in memory or on disk, the
remaining segments of the application can be loaded as needed. Of course, if there
isn't enough room for the scrap at application load time, there probably won't be
room for it later when a user tries to paste its contents into a document.

There are other disadvantages to keeping the desk scrap on disk: The disk may be
locked, it may not have enough room for the scrap, or it may be removed during use
of the application.

Important
If the application can't write the scrap to disk, it should put up an a lert box
informing the user, who may want to cancel the operation at that point.

Desk scrap data types
From the user's point of view there can be only one item on the Clipboard at a time,
but the application may store more than one version of the information in the scrap,
each representing the same Clipboard contents in a different form. For example,
text cut from a word processor document may be stored in the desk scrap both as text
and as a QuickDraw II picture.

Why would you want to do this? You might want your application to keep information
in its own internal format, but you may also want it to be able to communicate via the
Clipboard with other applications. When a user cuts or copies something to the
Clipboard, the application can put it there in two different ways:

1 . It can put it there internally so that a subsequent paste operation can be easily
handled.

2. It can put it there publicly so that if the user tries to paste it into another
application or desk accessory, the other application can handle it.

Desk scrap data types 20-3

There are two public scrap types, as shown in Table 20-2.

Table 20-2
Public scrap types

Value

0
1

Name

text Scrap
picScrap

Scrap type

Text
Picture

Applications must write at least one of these standard types of data to the desk scrap
and must be able to read both types. Most applications will prefer one of these types
over the other; for example, a word processor prefers text, whereas a graphics
application prefers pictures. An application should write at least its preferred
standard type of data to the desk scrap, and it may write both types (to pass the most
information possible to the receiving application, which may prefer the other type).

An application reading the desk scrap looks for its preferred data type. If the
application's preferred type isn't there-or if it's there but it was written by an
application having a different preferred type-the receiving application may or may
not be able to convert the data to the type it needs. If it cannot, some information
may be lost in the transfer process. For example, a graphics application can easily
convert text to a picture, but the reverse isn't true.

Using the Scrap Manager
This section discusses how the Scrap Manager routines fit into the general flow of an
application and gives you an idea of which routines you'll need under normal
circumstances. Each routine is described in detail later in this chapter.

The Scrap Manager depends upon the presence of the tool sets shown in Table 20-3
and requires that at least the indicated version of the tool set be present.

Table 20-3
Scrap Manager - other tool sets required

Tool set
number

$01 #01
$02 #02

Tool set
name

Tool Locator
Memory Manager

Minimum version
needed

1.0
1.0

The first Scrap Manager call that your application must make is ScrapStartUp.
Conversely, when you quit your application, you must call ScrapShutDown.

20-4 Chapter 20: Scrap Manager

If your application supports display of the Clipboard, you can call GetScrapCount to
find out whether a desk accessory has changed the desk scrap. The scrap count
indicates how many times the scrap has changed. Save the value of this field when
one of your application's windows is deactivated and a system window is activated.
Check the value each time through the main event loop to see whether it has
changed; if it has, the contents of the desk scrap have changed. If the Clipboard
window is visible, it needs to be updated whenever the count changes.

When the user gives a Cut or Copy command, your application needs to write the cut
or copied data to the desk scrap. First call ZeroScrap to clear its previous contents;
then call PutScrap to put the data into the scrap. If it makes it easier for your
application to transfer data, you can call PutScrap more than once with the same
scrap type.

When the user gives a Paste command, call GetScrap to access data of a particular
type in the desk scrap and to get information about the data.

•:• Note: ZeroScrap, PutScrap, and GetScrap all keep track of whether the scrap is in
memory or on the disk, so you don't have to worry about loading it first. After
any of these calls, the scrap will be in memory again.

Setting up a private scrap
Instead of using the desk scrap for storing data that's cut and pasted within an
application, you may want to set up a private scrap for this purpose.

•:• Note: In most applications that use the standard text or picture data types, it's
simpler for the application to use the desk scrap. However, if your application
defines its own private type of data, or if very large amounts of data might be cut
and pasted, using a private scrap may result in faster cutting and pasting within
the application.

The format of a private scrap can be anything you want, because no other application
will use it. For example, an application can simply maintain a pointer to cut or
copied data. The application must, however, be able to convert data between the
format of its private scrap and the format of the desk scrap.

•:• Note: The LineEdit scrap is a private scrap for applications that use LineEdit.
LineEdit provides routines that access its own scrap and transfer data between the
LineEdit scrap and the desk scrap.

Setting up a private scrap 20-5

If you use a private scrap, you must be sure that the right data is always pasted when
the user gives a Paste command (the right data being whatever was most recently cut
or copied in any application or desk accessory) and that the Clipboard, if visible,
always shows the current data. You should copy the contents of the desk scrap to your
private scrap at application startup and whenever a desk accessory is deactivated (call
GetScrap to access the desk scrap). When the application is terminated, or when a
desk accessory is activated, you should copy the contents of the private scrap to the
desk scrap. Call ZeroScrap to clear its previous contents; call PutScrap to write data
to the desk scrap.

If transferring data between the two scraps means converting it, and possibly losing
information, you can copy the scrap only when you actually need to, at the time
something is cut or pasted. The desk scrap needn't be copied to the private scrap
unless one of the following conditions is true:

• A Paste command is given before the first Cut or Copy command after the
application starts up.

• A desk accessory that changed the scrap was deactivated.

Until then, you must keep the contents of the desk scrap intact. If the Clipboard
window is visible, you must display the desk scrap, instead of the private scrap, in
that window.

After one of the preceding conditions has occurred, you can ignore the desk scrap
until a desk accessory is activated or the application is terminated; in either of these
cases, you must copy the private scrap back to the desk scrap. Thus, whatever was last
cut or copied within the application is pasted if a Paste command is given in a desk
accessory or in the next application. If no Cut or Copy commands are given within
the application, you never have to change the desk scrap.

If your application encounters problems in trying to copy one scrap to another, it
should alert the user. If the desk scrap is too large to copy to the private scrap, the
user may want to leave the application or simply proceed with an empty Clipboard.
If the private scrap is too large to copy to the desk scrap, either because it's disk based
and too large to copy into memory or because it exceeds the maximum size allowed
for the desk scrap, the user may want to stay in the application and cut or copy a
smaller item.

20-6 Chapter 20: Scrap Manager

$0116

Parameters

Errors

C

$0216

Parameters

Errors

C

ScrapBootlnit
Initializes the Scrap Manager; called only by the Tool Locator.

Warning
An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

ScrapStartUp
Starts up the Scrap Manager for use by an application.

Important

Your appl ication must make this call before it makes any other Scrap Manager
ca lls.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void ScrapStar tUp ()

Scrap Manager housekeeping routines 20-7

$0316

Parameters

Errors

C

$0416

Parameters

ScrapShutDown
Shuts down the Scrap Manager.

Important

If your application has started up the Scrap Manager, the application must make
this call before it quits.

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pascal void ScrapShutDown ()

Scrap Version
Returns the version number of the Scrap Manager.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

f- SP

Word- Version number of the Scrap Manager

f-SP

C e xtern pascal Word ScrapVe rsion ()

20-8 Scrap Manager housekeeping routines

$0516 Scrap Reset
Resets the Scrap Manager; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$0616 ScrapStatus
Indicates whether the Scrap Manager is active.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

activeFlag

Errors None

Word-Space for result

f-SP

Word-BOOLEAN; TRUE if Scrap Manager active, FALSE if inactive

f-SP

C extern pascal Boolean ScrapStatus()

Scrap Manager housekeeping routines 20-9

$0D16

Parameters

GetScrap
Copies scrap information of the appropriate type to a specified handle, setting the
handle to the correct size.

•:• Note: To copy the desk scrap to the LineEdit scrap, use the LineEdit routine
LEFromScrap.

Stack before call

previous contents

destHandle

scrap Type

Long-HANDLE to scrap destination

Word-Scrap type; picScrap, tex tS c rap, or application defined

f-SP

Stack after call

previous contents I
- - ------ f- SP

Errors $1610 badS c rapType

Memory Manager errors

ProDOS errors

No scrap of this type found

Returned unchanged

Returned unchanged

C extern pascal void GetScra p (de s tHandle , scrapType)

Handle destHandle ;

Word scrapType ;

20-10 Scrap Manager routines

$1216

Parameters

GetScrapCount
Returns the current scrap count. The count changes every time ZeroScrap is called.
You can use this count for testing whether the contents of the desk scrap have
changed; if ZeroScrap has been called, presumably PutScrap has also been called.
This information may be useful if your application supports display of the Clipboard
or has a private scrap.

Stack before call

previous contents

wordspace

Stack after call

previous contents

scrapCount

Errors None

Word-Space for result
(-SP

Word-INTEGER; current scrap count
(-SP

C extern pascal unsigned int GetScrapCount ()

Scrap Manager routines 20-l l

$0El6

Parameters

GetScrapHandle
Returns a copy of the handle for the scrap of a specified type.

GetScrapHandle allows you to access the scrap without making a copy of it, which
might be important when memory is in short supply.

Stack before call

previous contents

longspace

scrapType

Long-Space for result

Word-Scrap type; picScrap, textScrap, or application defined

f- SP

Stack after call

previous contents

scrapHandle Long-HANDLE to specified type of scrap

f-SP

Errors

C

20-12

$1610 badScrapType

Memory Manager errors

ProDOS errors

No scrap of this type found

Returned unchanged

Returned unchanged

e xtern pascal Handle GetScrapHandle (scrapType)

Word scrapType ;

Scrap Manager routines

$1016 GetScrapPath
Returns a pointer to the pathname used for the Clipboard file .

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

pathPtr

Errors None

Long-Space for result

f-SP

Long-POINTER to pathname

f-SP

C extern pascal Pointer GetScrapPath ()

Scrap Manager routines 20-13

$0F16 GetScrapSize
Returns the size of a specified scrap.

Parameters

Stack before call

previous contents

longspace

scrap Type

Long-Space for result

Word-Scrap type; picScrap, textScrap, or application defined

~SP

Stack after call

previous contents

Errors

C

20-14

scrapSize Long-Size of scrap in bytes

~SP

$1610 badScrapType

Memory Manager errors

ProDOS errors

No scrap of this type found

Returned unchanged

Returned unchanged

extern pascal Longword GetScrapSize(scrapType)

Word scrapType;

Scrap Manager routines

$1316

Parameters

GetScrapState
Returns a flag indicating the current state of the scrap. The scrapState flag is set to a
nonzero value if the scrap is in memory; it is set to O if the scrap is currently on disk.

•:• Note: The scrapState flag is actually O if the scrap should be on disk. The scrap
may not be on disk because a user can delete the Clipboard file .

Stack before call

previous contents

wordspace Word-Space for result

~SP

Stack after call

previous contents

scrapState Word-INTEGER; nonzero if scrap in memory, 0 if on disk

~SP

Errors

C

$0A16

Parameters

Errors

C

None

extern pascal Word GetScrapSt a te ()

LoadScrap
Reads the desk scrap from the scrap file into memory. If the desk scrap is already in
memory, it does nothing. If the Clipboard file cannot be found, no error is returned;
the computer responds as if you had loaded an empty Clipboard file.

The stack is not affected by this call. There are no input or output parameters.

Memory Manager errors

ProDOS errors

Returned unchanged

Returned unchanged

extern pascal void LoadScrap ()

Scrap Manager routines 20-15

$0C16

Parameters

PutScrap
Appends specified data to the scrnp that has the same type as the data. If the scrap is
on disk, the scrap is loaded.

Important

Don't forget to call ZeroScrap if you want to clear the scrap's previous contents.
If you don't call ZeroScrap, the data Is appended to the existing scrap.

•!• Note: To copy the LineEdit scrap to the desk scrap, use the LineEdit routine
LEToScrap .

Stack before call

previous contents

-- numBytes

scrap Type

-- srcPtr

--

--·

Long-LONGINT; number of bytes to write

Word-Scrap type; picScrap, tex tScrap, or application defined

Long-POINTER to data to be placed in scrap

(-SP

Stack after call

previous contents '
-------- (- SP

Errors

C

20-16

Memory Manager errors

ProDOS errors

Returned unchanged

Returned unchanged

e xtern pascal void PutScrap (numBytes , scrapType , srcPtr)

unsigned Longint numBytes ;

Word scrapType ;

Pointer srcPtr ;

Scrap Manager routines

$1116 SetScrapPath
Sets a pointer to the pathname used for the Clipboard file .

Parameters

Stack before call

previous contents

pathPtr Long-POINTER to pathname of Clipboard

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetScrapPath (pathPtr)

Pointer pathPtr ;

$0916 UnloadScrap
Writes the desk scrap from memory to the scrap file and releases the memory the desk
scrap occupied. If the desk scrap is already on disk, UnloadScrap does nothing.

Parameters

Errors

C

The stack is not affected by this call. There are no input or output parameters.

Memory Manager errors

ProDOS errors

Returned unchanged

Returned unchanged

extern pascal void UnloadScrap()

Scrap Manager routines 20-17

$0816

Parameters

Errors

C

ZeroScrap
Clears the contents of the scrap, whether the scrap is memory or on disk, and also
changes the scrap count. When the user selects Cut or Copy, your application should
call ZeroScrap before it calls PutScrap.

The stack is not affected by this call. There are no input or output parameters.

Memory Manager e rrors

ProDOS errors

Returned unchanged

Returned unchanged

extern pascal void ZeroScr a p ()

20-18 Scrap Manager routines

Scrap Manager summary
This section briefly summarizes the constants and tool set error codes contained in
the Scrap Manager. There are no predefined data structures for the Scrap Manager.

Important

These definitions are provided In the appropriate Interface file .

Table 20-4
Scrap Manager constants

Name Value

Public scrap type
text Scrap $0000
picScrap $0001

Table 20-5

Description

Text scrap
Picture scrap

Scrap Manager error codes

Code Name Desc ription

$1610 badSc rapType No scrap of this type found

Scrap Manager summary 20-19

Chapter 21

Sound Tool Set

The Sound Tool Set gives you the ability to access the sound hardware without
having to know specific hardware input/output addresses. ·

Sound Tool Set calls (other than the standard housekeeping routines) can be broken
down into two groups. The first group is made through the normal tool call
mechanism, with parameters being passed to and from the called routines on the
stack. The second group is composed of low-level routines that, unlike most tool
calls, use an eight-bit accumulator, pass their parameters in registers, and are
accessed through a jump table.

There are two other tool sets dealing with sound-the Note Synthesizer and the Note
Sequencer. These tool sets are not documented in the Apple JIGS Toolbox
Reference. At the time of publication, documentation of these tool sets is planned
for another, as yet unnamed, book.

•:• Note: This chapter uses the terms Note Synthesizer and Free-Form
Synthesizer. In the world of Apple sound, these terms refer to specific tool sets
and not to electronic musical instruments.

A preview of the Sound Tool Set routines
To introduce you to the capabilities of the Sound Tool Set, all Sound Tool Set
routines are grouped by function and briefly described in Table 21-1. These routines
are described in detail later in this chapter, where they are separated into
housekeeping routines (discussed in routine number order), the rest of the numbered
routines (discussed in alphabetical order), and the low-level routines.

Important

The low-level routines do not have tool set routine names and thus do not fit
the alphabetical order organization; instead, they are organized In Jump table
offset order. Also note that the low-level routines do not have routine numbers.

21-1

Table 21-1
Sound Tool Set routines and their functions

Routine

Housekeeping routines
SoundBootlnit

SoundStartUp
SoundShutDown
SoundVersion
SoundReset

SoundToolStatus

RAM and volume routines

Description

Initializes the Sound Tool Set; called only by the Tool Locator-must not be
called by an application
Starts up the Sound Tool Set for use by an application
Shuts down the Sound Tool Set
Returns the version number of the Sound Tool Set
Resets the Sound Tool Set; called only when the system is reset- must not be
made by an application
Indicates whether the Sound Tool Set is active

WriteRamBlock Writes a specified number of bytes from system RAM into DOC RAM
ReadRamBlock Reads a specified number of bytes from from DOC RAM into system RAM
GetSoundVolume Reads the volume setting for a generator
SetSoundVolume Changes the volume setting for the volume registers in the DOC or changes the

system volume
GetTableAddress Returns the jump table address for the low-level routines

Free-Form Synthesizer routines
FFStartSound Enables the DOC to start generating sound on a particular generator
FFStopSound Halts any specified sound generators that are generating sound
FFSoundStatus Returns the status of all 15 sound generators
FFGeneratorStatus Reads the first two bytes of the generator control block corresponding to a

SetSoundMIRQV
SetUserSoundIRQV
FFSoundDoneStatus

Low-level routines
Read Register
Write Register
Read RAM
Write RAM
Read Next
Write Next

Disable Increment

specified generator
Sets up the entry point into the sound-interrupt handler
Sets up the entry point for an application-defined synthesizer interrupt handler
Returns the current Free-Form Synthesizer playing status

Reads any register in the DOC
Writes a onebyte parameter to any register in the DOC
Reads any specified DOC RAM location
Writes a one-byte value to any specified DOC RAM location
Reads the next location pointed to by the Sound GLU address register
Writes one byte of data to the next DOC register or RAM location, depending
on the setting of the Sound GLU control register
Disables the auto-increment mode set up by a Read Register, Write Register,
Read RAM, or Write RAM low-level sound routine, thus allowing your
application to read a DOC register or memory location continuously

21-2 Chapter 21: Sound Tool Set

Sound hardware
The Apple IIGS sound hardware supports two sound subsystems. The first subsystem
is an extension of the Apple Ile sound capabilities. Using this subsystem,
applications toggle a soft switch, which in turn generates clicks in a speaker. In
addition, the IIGS allows the application to control the volume of the speaker.

The second subsystem uses a digital oscillator chip (DOC) and 64K of dedicated
RAM. The Sound Tool Set contains all of the firmware routines required to access the
sound hardware. Figure 21-1 shows the major functional blocks of the sound
hardware .

IIGS 1/0
Sound t-------,
GLU

Figure 21-1
Sound hardware block d iagram

Sound hardware 21-3

The sound GLU (general logic unit) acts as the interface chip between system
hardware and sound hardware. Figure 21-2 shows the sound GLU registers.

Sound GLU control

17161514131211101
Busy bit status J J I
DOC/RAM select J

Increment enable/disable

Reserved for future use; set to O

System volume

Data register

Address pointer low

Address pointer high

Figure 21-2
Sound GLU registers

The DOC RAM stores the waveforms used for sound generation. The DOC can create
sounds of any pitch and duration. Table 21-2 shows the DOC registers.

Table 21-2
DOC register allocation

Register Bits

number Function D7 D6 D5 D4 D3

$00-lF Frequency low FL7 FL6 FLS FL4 FL3
$20- 3F Frequency high FH7 FH6 FHS FH4 FH3
$40-SF Volume V7 V6 vs V4 V3
$60-7F Data sample W7 w6 ws W4 W3
$80-9F Waveform table pointer P7 P6 PS P4 P3
$AO-BF Control CA3 CA2 CAl CAO lE
$CO-DP Bank select/ table size/ resolution X BS T2 Tl TO
$EO Oscillator interrupt IRQ 1 04 03 02
$El Oscillator enable X X E4 E3 E2
$E2 Analog/digital converter S7 S6 SS S4 S3

21-4 Chapter 21: Sound Tool Set

D2 Dl DO

FL2 FLl FLO
FH2 FHl PHO
V2 Vl VO
W2 Wl WO
P2 Pl PO
M2 Ml H
R2 Rl RO
01 00 1
El EO X
S2 Sl so

For further information on the DOC, see the Apple JIGS Hardware Reference.

The analog section contains all the circuitry needed to amplify and filter the signal
coming from the sound GLU or the DOC. The signal will be sent to the speaker.

The sound connector provides the connection to interface cards that can take the
tones generated by the DOC and modify them further. Two examples of possible
sound cards are programmable filter stereo interface cards and sound sampling
cards .

Oscillators and generators
An oscillator is the basic sound-generating unit in the DOC. The DOC contains 32
oscillators, each of which can function independently from all the other oscillators.

One of the modes of the DOC is called swap mode. The Free-Form Synthesizer uses
this mode to generate sounds. In swap mode, a pair (or swap pair) of oscillators
form a functional oscillator unit called a generator. There are 15 generators
defined in the Apple IIGS sound system. An oscillator-to-generator translation table
converts an oscillator number to the appropriate generator number. That table is
accessed through the jump table shown in the section "GetTableAddress" in this
chapter .

Each oscillator controls seven DOC registers in the range 00- DF, as shown in
Table 21-3.

Table 21-3
Oscillator registers

Register Oscillator O Oscillator 1 Oscillator n
function registers registers registers

Frequency low $00 $01 $00 + n
Frequency high $20 $21 $20 + n
Volume control $40 $41 $40 + n
Data sampling $60 $61 $60 + n
Waveform table pointer $80 $81 $80 + n
Control register $AO $Al $AO+ n
Bank select/table size/resolution $CO $Cl $CO+ n

Oscillators 30 and 31 are reserved for system use and should not be used by
applications. If an interrupt is generated by oscillator 30 or 31, control is passed to
the System Failure Manager with an "unclaimed sound interrupt" message. When the
SoundBootinit routine is called by the system at boot time, all of the sound interrupt
handler pointers point to the System Failure Manager with this message.

Oscillator 3 1
registers

$1F
$3F
$5F
$7F
$9F
$BF
$DF

Oscillators and generators 21-5

The work area for the sound routines (specified in the SoundStartUp call) is broken
down into 16 groups of 16 bytes each, with each 16-byte group comprising one
generator control block (GCB). The first byte of each contains the synthesizer
type being used by that generator. The high nibble is reserved for use by the system
and must be zero. The low nibble of the byte (bits 3-0) contains the type. The
remaining 15 bytes in the GCB are for use by the application, and their meaning and
value may vary depending on the synthesizer type.

Using the Sound Tool Set
This section discusses how the Sound Tool Set routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The Sound Tool Set depends on the presence of the tool sets shown in Table 21-4,
and requires that at least the indicated version of the tool set be present.

Table 21-4
Sound Tool Set-other tool sets required

Tool Set
number

$01 #01
$02 #02

Tool Set
name

Tool Locator
Memory Manager

Minimum version
needed

1.0
1.0

Your application must make the SoundStartUp call before it makes any other Sound
Tool Set calls. Conversely, when your application quits, it must make the
SoundShutDown call.

The Sound Tool Set gives you the ability to control the sound hardware without
having to access the hardware registers directly. To provide this capability, the
Sound Tool Set must be able to read and write to RAM, read and write to the DOC
registers, and raise and lower the volume. This requires a set of low-level sound
routines. Unlike the other Sound Tool Set routines, which use the stack to pass
parameters in the normal tool call fashion, these routines use registers to pass
parameters.

•:• Note: Because the low-level sound routines have been designed and
implemented to increase performance, they may not be available in all
programming languages. At the time of publication, for example, the low-level
sound routines were not available from Apple IIGS Workshop C.

The low-level routines are entered through a jump table. The table address can be
obtained through a call to the GetTableAddress routine. The actual format of the
jump table is shown in the section "GetTableAddress" in this chapter.

21-6 Chapter 21: Sound Tool Set

$0108 SoundBootlnit
Initializes the Sound Tool Set; called only by the Tool Locator.

Warning

An application must never make this call.

This routine performs the following:

• Resets all of the DOC RAM

• Resets the Sound Tool Set's work area

• Resets the oscillators to an uninitialized state

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

Sound Tool Set housekeeping routines 21-7

$0208

Parameters

SoundStartUp
Starts up the Sound Tool Set for use by an application. The direct page must be page­
aligned and locked until the SoundShutDown call is made.

Important

Your application must make this call before it makes any other Sound Tool Set
calls.

Stack before call

previous contents

dPageAddr Word- Bank $0 starting address of one page of direct-page space

f-SP

Stack after call

previous contents I
-------- f- SP

Errors $0810

$0818

noDOCFndErr

sndAlreadyStrtErr

No DOC or RAM found

Sound tools already started

C extern pascal void SoundStar tUp (dPageAddr)

Word dPageAddr ;

21-8 Sound Tool Set housekeeping routines

$0308

Parameters

Errors

C

$0408

Parameters

SoundShutDown
Shuts down the Sound Tool Set.

Important

If your application has started up the Sound Tool Set, the application must make
this ca ll before It quits.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void SoundShutDown ()

SoundVersion
Returns the version number of the Sound Tool Set.

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

~SP

Word-Version number of Sound Tool Set

~SP

C e xtern pascal Word SoundVe r sion ()

Sound Tool Set housekeeping routines 21-9

$0508

Parameters

Errors

C

$0608

Parameters

Sound Reset
Resets the Sound Tool Set; called only when the system is reset.

Warning

An application must never make this call. This call is used only by the system to
control the shutdown of generators. If you want to shut down a generator, use
the StopSound routine.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

SoundToolStatus
Indicates whether the Sound Tool Set is active.

Stack before call

previous contents

wordspace Word-Space for result

~SP

Stack after call

previous contents

Errors

C

21-10

activeFlag

None

Word-BOOLEAN; TRUE if Sound Tool Set active, FALSE if inactive

~SP

extern pascal Boolean SoundToolStatus()

Sound Tool Set housekeeping routines

$1108 FFGeneratorStatus
Reads the first two bytes of the generator control block that corresponds to a specified
ge nerator.

Parameters

Stack before call

previous contents

wordspace

genNumber

Stack after call

previous contents

genStatus

Errors None

Word-Space for result

Word-Number of generator whose status will be returned

f-SP

Word-Status of genNumber (see Figure 21-3)

f-SP

C extern pascal Word FFGeneratorStatus (genNumber)

Word genNumbe r ;

(continued)

Sound Tool Set routines 21 -11

Generator status word
The status returned in the genStatus parameter is in the format shown in Figure 21-3.

I 15I14I13I12111110 I 9 1 a 1 7 1 6 1 5 1 4 1 3 1 2 1 1 I o I
tostBlock J T

Last block of wave = l
Not last block of wave = 0

Reserved for future use; must be 0

Generator available = $00
Free-Form Synthesizer = $01

Note Synthesizer = $02
Reserved = $03-$07

Application-defined = $08-SOF

DOC channel number ($00-SOF)

Generator number ($00-SOE)

Figure 21-3
Generator status word

21 -12 Sound Tool Set routines

$1408 FFSoundDoneStatus
Returns the current Free-Form Synthesizer playing status. If the specified generator is
currently playing out a waveform, the status returned to the caller will be TRUE. If the
generator is not playing, the status will be FALSE ($FFFF).

Parameters

Stack before call

previous contents

wordspace

genNumber

Stack after call

previous contents

genDoneFlag

Errors $0813

Word-Space for result

Word-Number of generator whose status will be returned

~SP

Word-BOOLEAN; status of genNumber: TRUE if done playing,

~ SP FALSE if playing

invalGenNumErr Invalid generator number

C extern pascal Boolean FFSoundDoneStatus(genNumber)

Word genNumber ;

Sound Tool Set routines 21-13

$1008

Parameters

FFSoundStatus
Returns the status of all 15 sound generators. Any bit position set to 1 in the status
word returned from the function call signifies that the corresponding generator is
active. The format of the status word returned is the same as that of the stop-sound
mask as illustrated in Figure 21-6 in the section "FFStopSound," with bit 0
corresponding to generator 0, bit 1 corresponding to generator 1, and so on.

Stack before call

prevtous contents

wordspace

Stack after call

previous contents

genStatusinfo

Errors None

Word-Space for result

~SP

Word-Status of all generators (bit O = generator O and so on)

~SP

C e xtern pascal Word FFSoundStatus()

21-14 Sound Tool Set routines

$0E08 FFStartSound
Enables the DOC to start generating sound on a particular generator. If this call is
made to a generator that is already active, the previous sound-generation process is
terminated and the new sound process is started.

Parameters

Stack before call

previous contents

genNumFFSynth

pBlockPtr

Word-Channel, generator, and type (see Figure 21-4)

Long-POINTER to parameter block for sound (see Figure 21-5)

~SP

Stack after call

previous contents I
--------~SP

Errors $0812 noSAppinitErr

$0813 invalGenNumErr

$0814 synthModeErr

$0815 genBusyErr

No SoundStartUp call made

Invalid generator number

Synthesizer mode error

Generator already in use

C extern pascal void FFStartSound(genNumFFSynth,pBlockPtr)

Word genNumFFSynth ;

Pointer pBlockPtr ;

(continued)

Sound Tool Set routines 21 - 15

Channel-generator-type word
The values for the channel-generator-type word are shown in Figure 21-4.

11s114113112111 110 I 9 1 s 1 1 I 6 I 5 I 4 I 3 1 2 1 1 1 a I
DOC channel numbe, ($0-~F) 'J

1 1 T T
Generator number ($0-SE)

Reserved for future use; must be 0

Figure 21 -4
Channel-generator-type word

21-16 Sound Tool Set routines

Free-Form Synthesizer = SO l
Note Synthesizer = $02

Reserved = $03-$07
Application-defined = $08-SOF

Parameter block
The values for the parameter block are shown in Figure 21-5. The effective output
sample rate can be calculated as follows:

JreqO!fset = ((32 x Output sample rate in hertz)/1645)

For more detailed information on these settings, refer to the Apple //GS Hardware
Reference.

Offset Field

so
waveStarl Long-Starting address of wave

2

3

4
waveS/ze Word-Waveform size in pages

5

6
freqOffset Word-Output sample rate

7

8
docBuffer Word-DOC buffer start address;

9 high-order byte significant, low-order byte = 0
DA

bufferS/ze Word-DOC buffer size; OB high-order byte = 0, low-order byte significant
DC
OD

nextWavePtr Long-POINTER to start of next wave's parameter block
OE
OF
10

vo/Sefflng
11 Word-DOC volume setting;

high-order byte = 0, low-order byte significant

Figure 21-5
Sound parameter block

Sound Tool Set routines 21-17

$0F08

Parameters

FFStopSound
Halts any specified sound generators that are generating sound. Depending on the
setting of a 16-bit mask passed as a parameter to the routine, any of 15 generators will
be stopped if running. Each bit position in the stop-sound mask corresponds to a
sound generator. Bit O corresponds to generator 0, bit 1 corresponds to generator 1,
and so on, up to bit 15 (bit 15 must be 0). Figure 21-6 illustrates the stop-sound mask.

Stack before call

previous contents

genMask

Stack after call

Word-Mask to stop generators (see Figure 21-6)

f-- SP

previous contents I
-------- f-- SP

Errors None

C extern pascal void FFStopSound(genMask)

Word genMask ;

Stop-sound mask

The values for the stop-sound mask are shown in Figure 21-6.

21-18 Sound Tool Set routines

!is I 14 I 13112 I 11 I 10 I 9 I a I 1 I 6 I s I 4 I 3 I 2 I 1 I o I

Reserved; must be O Yj
gen14off

Generator 14 off = l
Generator 14 on = 0

gen13off ­
Generator 13 off = l
Generator 13 on = 0

gen12off j
Generator 12 off = l
Generator 12 on = 0

gen17off ­
Generator 11 off = l
Generator 11 on = 0

genlOoff -
Generator l O off = l
Generator l O on = O

gen9off ­
Generator 9 off = l
Generator 9 on = 0

genBoff -
Generator 8 off = l
Generator 8 on = 0

gen7off ­
Generator 7 off = l
Generator 7 on = 0

gen6off -
Generator 6 off = l
Generator 6 on = O

gen5off ­
Generator 5 off = l
Generator 5 on = 0

gen4off -
Generator 4 off = l
Generator 4 on = O

gen3off ­
Generator 3 off = l
Generator 3 on = O

gen2off -

Figure 21-6
Stop-sound mask

Generator 2 off = l
Generator 2 on = 0

genloff ­
Generator l off = l
Generator l on = O

genOoff -
Generator O off = l
Generator O on = 0

Sound Tool Set routines 21-19

Assembly-language example
The following example stops generators O and 8:

PEA $ 1 00 1

Stop Sound

21 -20 Sound Tool Set routines

$0C08 GetSoundVolume
Reads the volume setting for a generator. The range of possible values is from $00 to
$FF. All eight bits are valid for DOC volume registers.

Parameters

Stack before call

previous contents

wordspace

genNumber

Stack after call

previous contents

VO/Setting

Errors None

Word-Space for result

Word-Number of generator whose volume will be returned

~SP

Word-Volume setting, from $00 to $FF; high nibble of low-order byte

~ SP significant

C extern pascal Word GetSou ndVol ume (genNumber)

Word genNumber ;

Sound Tool Set routines 21-21

$0B08

Parameters

GetTableAddress
Returns the jump table address for the low-level routines (see Table 21-5).

Besides the offsets to the low-level routines, the jump table contains the following
three additional functions:

• The oscillator table translates from generator number to oscillator number and
returns the even number of the pair of oscillators.

• The GCB address table points to the first location of the GCB corresponding to a
generator.

• The generator table translates from oscillator number to generator number.

Stack before call

previous contents

longspace

Stack after call

previous contents

-- jumpTableAddr

Errors None

Long-Space for result

~SP

Long-Jump table address for low-level routines

~SP

C extern pascal Pointer GetTableAddress()

21-22 Sound Tool Set routines

Jump table addresses
Table 21-5 illustrates the format of the jump table addresses used by the Sound Tool
Set low-level routines.

Table 21-5
Jump table addresses for Sound Tool Set low-le vel outines

Routine Offset Constant Address format

8 bits 8 bits 8 bits

Read Register $00 readRegister Address low Address high Bank
Write Register $04 writeRegister Address low Address high Bank
Read RAM $08 readRam Address low Address high Bank
Write RAM $0C writeRam Address low Address high Bank
Read Next $10 readNext Address low Address high Bank
Write Next $14 writeNext Address low Address high Bank
Oscillator table $18 oscTable Address low Address high Bank
Generator table $ lC genTable Address low Address high Bank
GCB address table $20 gcbAddrTable Address low Address high Bank
Disable increment $24 disable Inc Address low Address high Bank

Sound Tool Set routines

8 bits

$00
$00
$00
$00
$00
$00
$00
$00
$00
$00

21-23

$0A08 ReadRamBlock
Reads a specified number of bytes from DOC RAM area into system RAM.

Warning
Interrupts must be disabled whenever your application accesses the DOC RAM .
Your application must disable Interrupts before it accesses the RAM and then
reenable them afterward.

If the number of bytes and the starting location add up to a value greater than 64K, an
error is generated.

Important
Your application must call the Memory Manager to allocate the buffer for data
read from the DOC RAM.

Parameters

Stack before call

previous contents

-- destPtr

docStart

byteCount

- - Long-POINTER to starting RAM address where data will be written

Word- Starting DOC address from which data will be read

Word-Number of bytes to be copied

~SP

Stack after call

previous contents I
- ------ - ~SP

Errors $0810

$0811

noDOCFndErr

d ocAddrRngErr

No DOC or RAM found

DOC address range error

C e xtern pascal void ReadRamBlock (destPtr , docStart , b yteCount)

Pointer destPtr;

Word docStart ;

Wo r d byteCount ;

21-24 Sound Tool Set routines

$1208 SetSoundMIRQV
Sets up the entry point into the sound interrupt handler. This routine is accessed
every time an interrupt is generated by the DOC.

Parameters

Stack before call

previous contents

sMasterIRQ

Stack after call

Long-New master sound IRQ vector

f-SP

previous contents I
-------- f- SP

Errors None

C e xtern pascal v oid SetSoun dM IRQV {sMasterIRQ)

Longword sMasterIRQ ;

Sound Tool Set routines 21-25

$0D08

Parameters

SetSoundVolume
Changes the volume setting for the volume registers in the DOC or changes the system
volume.

If genNumber is specified as $00-$0E, the call sets the volume on the corresponding
pair of generators in the DOC. If genNumber is specified as $OF or greater, the call
sets the system volume control. The range of values for the volume setting are
$00-$FF. The generator volume registers use all eight bits of resolution. The system
volume control uses only the upper nibble to determine the setting.

Stack before call

previous contents

volume

genNumber

Word-Generator or system volume setting; $00-$FF

Word-Generator whose volume will be set; $00-$0E sets DOC,

f-- SP $0F-$FF sets system volume

Stack after call

prevtous contents '
------- - f-- SP

Errors None

C e xtern pascal void SetSoundVolume (volume , genNumber)

Word volume ;

Word genNumber ;

21-26 Sound Tool Set routines

$1308

Parameters

SetUserSoundl RQV
Sets up the entry point for an application-defined synthesizer interrupt handler.
When an interrupt occurs for an application-defined synthesizer, control is passed to
the RAM-based synthesizer code through this vector. The old vector installed is
passed back to the caller who must preserve the vector.

If control is passed to the user vector, the application-defined interrupt handler must
validate that the synthesizer mode matches the synthesizer mode used by this
handler. If it does not match, then the handler must pass control farther down the
chain through the vector that was preserved. Control is passed through a JSL
instruction; therefore, the application must return control through an RTI
instruction.

Stack before call

previous contents

longspace

-- userIRQVector

Stack after call

previous contents

oldIRQVector

Errors None

Long-Space for result

Long-New user sound IRQ vector

f-SP

Long-Old user sound IRQ vector

f-SP

C extern pascal Pointer SetUserSoundIRQV (userIRQVector)

Longword userIRQVector ;

Sound Tool Set routines 21-27

$0908 WriteRamBlock
Writes a specified number of bytes from system RAM into DOC RAM.

Warning
Interrupts must be disabled whenever your application accesses the DOC RAM.
Your application must disable Interrupts before it accesses the RAM and then
reenable them afterward.

If the sum of the starting address and the byte count is greater than 64K, an error will
be returned.

Warning

Do not Include the 1/0 space in banks $00, $01, SEO, and $El in the source­
address range of bytes to be written to the DOC RAM. If you do, you w ill access
soft switches that will cause the system to crash .

Parameters

Stack before call

previous contents

-- srcPtr

docStart

byteCount

--· Long-POINTER to data to be written from RAM

Word-Starting address of DOC buffer to receive data

Word-Number of bytes to be written

<-SP

Stack after call

previous contents I
--------<-SP

Errors $0810

$0811

noDOCFndErr

docAddrRngErr

No DOC or RAM found

DOC address range error

C extern pascal void WriteRamBlock(srcPtr , docStart , byteCount)

Pointer srcPtr;

Word doest art ;

Word byteCount ;

21 -28 Sound Tool Set routines

(None)

Parameters

Read register
Reads any register within the DOC. This call is made through the appropriate jump
table address provided by a GetTableAddress call. (See the section
"GetTableAddress" in this chapter.) The table provided by GetTableAddress
includes a table of generator-to-oscillator translations. This table gives the number
of the first oscillator in the pair for a generator. The number of the second oscillator
equals the number of the first oscillator plus 1.

By getting the oscillator number that corresponds to a particular generator and
adding it to the base register number of a register group, an application can find out
the settings for an oscillator. A table of the DOC registers has been provided in the
section "Sound Hardware" in this chapter.

This routine leaves the sound GLU in auto-increment and register access modes.

The stack is not affected by this call. Instead, the following registers are used:

Relevant registers before call

e = O; native mode
m = 1; 8-bit accumulator
x = O; 16-bit index registers
X = DOC register to read

Relevant registers after call

Accumulator (8-bit) = Contents of specified DOC register

Errors None

C Call cannot be made from C.

Sound Tool Set low-level routines 21-29

(None)

Parameters

Write register
Writes a one-byte parameter to any register in the DOC. The call is made through the
appropriate jump table address provided by a GetTableAddress call. To write to an
oscillator register that corresponds to a generator, take the following steps:

1 . Take the oscillator number from the oscillator table.

2. Add 1 to access the odd oscillator of the pair.

3. Add the base register of the specific register.

4. Make the Write Register call through the Write Register routine's address in the
jump table.

This routine leaves the sound GLU in auto-increment and register access modes.

The stack is not affected by this call. Instead, the following registers are used:

Relevant registers before call

e = O; native mode
m = 1; 8-bit accumulator
x = O; 16-bit index registers
Accumulator (8-bit) = data to write
X = DOC register number

Relevant registers after call

None

Errors None

C Call cannot be made from C.

21-30 Sound Tool Set low-level routines

(None)

Parameters

Read RAM
Reads any specified DOC RAM location.

Warning
Interrupts must be disabled whenever your applica tion accesses the DOC RAM .
Your application must d isable interrupts before it accesses the RAM and then
reenable them afterward.

This call is made through the appropriate jump table address provided by a
GetTableAddress call. See the section "GetTableAddress" in this chapter. This
routine leaves the sound GLU in auto-increment and RAM access modes.

Important

This routine does not do any type of error checking on the address or data.

The stack is not affected by this call. Instead, the following registers are used:

Relevant registers before call

e = O; native mode
m = 1; 8-bit accumulator
x = O; 16-bit index registers
X = DOC RAM address to read

Relevant registers after call

None

Errors None

C Call cannot be made from C.

Sound Tool Set low-level routines 21 -31

(None)

Parameters

Write RAM
Writes a one-byte value to any specified DOC RAM location.

Warning
Interrupts must be d isabled whenever your application accesses the DOC RAM.
Your application must disable interrupts before it accesses the RAM and then
reenable them afterward.

This call is made through the appropriate jump table address provided by a
GetTableAddress call. See the section "GetTableAddress" in this chapter. This
routine leaves the sound GLU in auto-increment and RAM access modes.

Important

This routine does not do any type of error checking on the address or data.

The stack is not affected by this call. Instead, the following registers are used:

Relevant registers before call

e = O; native mode
m = 1; 8-bit accumulator
x = O; 16-bit index registers
Accumulator (8-bit) = data to write
X = DOC RAM address to write to

Relevant registers after call

None

Errors None

C Call cannot be made from C.

21-32 Sound Tool Set low-level routines

(None)

Parameters

Read Next
Reads the next location pointed to by the sound GLU address register.

Warning

Interrupts must be disabled whenever your application accesses the DOC RAM.
Your application must disable Interrupts before It accesses the RAM and then
reenable them afterward.

This call is made through the appropriate jump table address provided by a
GetTableAddress call.

Important
Before making the first Read Next call in a sequence, you must make a Read
Register or Read RAM call with the register or address desired minus 2. This
leaves the sound GLU control register set to auto-Increment mode and the
sound GLU address register pointing to the correct DOC register or address.

The stack is not affected by this call . Instead, the registers listed below are used:

Relevant registers before call

None (all will have been set properly by the previous Read Register or Read RAM call)

Relevant registers after call

Accumulator (8-bit) = Data byte read

Errors None

C Call cannot be made from C.

Sound Tool Set low-level routines 21 -33

(None)

Parameters

Write Next
Writes one byte of data to the next DOC register or RAM location, depending on the
setting of the sound GLU control register.

Warning

Interrupts must be disabled whenever your application accesses the DOC RAM.
Your application must d isable Interrupts before it accesses the RAM and then
reenable them afterward.

Important

Before making the first Write Next call in a sequence, you must make a Read
Register or Read RAM call with the register or address desired minus 2. This
leaves the sound GLU control register set to auto-increment mode and the
sound GLU address reg ister pointing to the correct DOC register or address.

The stack is not affected by this call. Instead, the following registers are used:

Relevant registers before call

Accumulator (8 -bit) = Data byte to write
All others will have been set properly by the previous Read Register or Read RAM call

Relevant registers after call

None

Errors None

C Call cannot be made from C.

21-34 Sound Tool Set low-level routines

(None)

Parameters

Errors

C

Disable Increment
Disables the auto-increment mode set up by a Read Register, Write Register, Read
RAM, or Write RAM low-level sound routine, thus allowing your application to read a
DOC register or memory location continuously. Auto-increment mode remains
disabled until your application makes another Read Register, Write Register, Read
RAM, or Write RAM call.

For example, if you want to read the analog-to-digital converter, your application can
make a Read Register call to Register $E2 and then make a Disable Increment call.
Because auto-increment mode is disabled, your application can then make a Read
Next call to read the A-to-D converter continuously.

The stack is not affected by this call. There are no input or output parameters.

None

Call cannot be made from C.

Sound Tool Set low-level routines 21-35

Sound Tool Set summary
This section briefly summarizes the constants, data structures, and tool set errors
contained in the Sound Tool Set.

Important

These definitions are provided in the appropriate Interface file.

Table 21-6
Sound Tool Set constants

Name Value Description

Jump table offsets
readRegister $00 Read Register routine
writeRegister $04 Write Register routine
readRam $08 Read RAM routine
writeRam $0C Write RAM routine
readNext $10 Read Next routine
writeNext $14 Write Next routine
oscTable $18 Pointer to oscillator table
genTable $1C Pointer to generator table
gcbAddrTable $20 Pointer to GCB address table
disable Inc $24 Disable Increment routine

Channel-generator-type word
ffSynthMode $0001 Free-Form Synthesizer mode
noteSynthMode $0002 Note Synthesizer mode

Stop-sound mask
genOoff $0001 Generator O off
genloff $0002 Generator 1 off
gen2off $0004 Generator 2 off
gen3off $0008 Generator 3 off
gen4off $0010 Generator 4 off
genSoff $0020 Generator 5 off
gen6off $0040 Generator 6 off
gen7off $0080 Generator 7 off
gen8off $0100 Generator 8 off
gen9off $0200 Generator 9 off
genlOoff $0400 Generator 10 off
genlloff $0800 Generator 11 off
gen12off $1000 Generator 12 off
gen13off $2000 Generator 13 off
gen14off $4000 Generator 14 off

21-36 Chapter 21: Sound Tool Set

Table 21-6 (continued)
Sound Tool Set constants

Name Value

Generator status word
genAvail $0000
ff Syn th $0100
note Syn th $0200
lastBlock $8000

Table 21-7

Description

Generator available
Free-Form Synthesizer
Note Synthesizer
Last block of wave

Sound Tool Set data structures

Name Offset Type Definition

SoundParamBlock (sound parameter block)
waveStart $00 Pointer Starting address of wave
waveSize $04 Word Waveform size in pages
freqOffse t $06 Word Output sample rate
docBuffer $08 Word DOC buffer start address; low-order byte= 0
bufferSize $0A Word DOC buffer start address; high-order byte = 0
nextWavePtr $0C SoundPBPtr Pointer to start of next wave's parameter block
volSetting $10 Word DOC volume setting; high-order byte = 0

Note: The actual assembly-language equates have a lowercase letter o in front of all names
given in this table.

Table 21-8
Sound Tool Set error codes

Code

$0810
$0811
$0812
$0813
$0814
$0815
$0817
$0818
$08FF

Name

noDOCFndErr
docAddrRngErr
noSAppinitErr
invalGenNurnErr
synthModeErr
genBusyErr
mstrIRQNotAssgnErr
sndAlreadyStrtErr
unclaimedSndintErr

Means

No DOC or RAM found
DOC address range error
No SoundStartUp call made
Invalid generator number
Synthesizer mode error
Generator already in use
Master IRQ not assigned
Sound Tool Set already started
Unclaimed sound interrupt error
(reported through System Failure Manager)

Sound Tool Set summary 21-37

Chapter 22

Standard File
Operations
Tool Set

The Standard File Operations Tool Set provides the standard user interface for
specifying a file to be opened or saved. The tool set provides dialog boxes that allow
the user both to open and save a file on a disk in any drive and to change disks in a
drive.

A preview of the Standard File Operations
Tool Set routines
To introduce you to the capabilities of the Standard File Operations Tool Set, all of its
routines are grouped by function and briefly described in Table 22-1. These routines
are described in detail later in this chapter, where they are separated into
housekeeping routines (discussed in routine number order) and the rest of the
Standard File Operations routines (discussed in alphabetical order).

22-1

Table 22-1
Standard File Operations Tool Set routines and their functions

Routine Description

Housekeeping routines
SFBootinit Initializes the Standard File Operations Tool Set; called only by the Tool

SFStartUp
SFShutDown
SFVersion
SFReset

SFStatus

Locator-must not be called by an application
Starts up the Standard File Operations Tool Set for use by an application
Shuts down the Standard File Operations Tool Set
Returns the version number of the Standard File Operations Tool Set
Resets the Standard File Operations Tool Set; called only when the system is
reset-must not be called by an application
Indicates whether the Standard File Operations Tool Set is active

Other Standard File routines
SFGetFile Displays the standard Open File dialog box and returns information about the file

selected by the user
SFPutFile Displays the standard Save File dialog box and returns information about the name

of the file to be saved
SFPGetFile Displays a custom Open File dialog box and returns information about the file

selected by the user
SFPPutFile Displays a custom Save File dialog box and returns information about the name of

the file to be saved
SFAl!Caps Allows the application to decide if filenames will be displayed in all uppercase letters

or in uppercase and lowercase letters

22-2 Chapter 22: Standard FIie Operations Tool Set

Standard dialog boxes
The standard Open File dialog box is produced by the SFGetFile routine and is
illustrated in Figure 22-1.

Lood which Picture:
8 IP/Tests/Hp/

Figure 22-1

-0-

Standard. Open File dialog box

(Disk)

L~Open J
(Close)

(Cancel)

The standard Save File dialog box is produced by the SFPutFile routine and is
illustrated in Figure 22-2.

® /Pl
Free: 1042k out of 4864k. (Disk)

D Apw -0- (Hew Folder)
D Apw.81
<~:~ Eoi;ic
<~:~ Eoidc.tmrnchiir
<f~ tk h\1 (/.\1!)'.i.16
D Deskto

Figure 22-2
Standard Save File dialog box

Open)
)

Standard dialog boxes 22-3

Standard File dialog templates
The Standard File Operations Tool Set allows you to provide custom dialog boxes for
the Open File and Save File dialog boxes. To produce a custom dialog box, you use
the SFPPutFile and SFPGetFile routines and provide a pointer to a dialog template in
memory. A dialog template is a record passed to the Dialog Manager routine
GetNewModalDialog. The template contains information about the dialog to be
created, including a bounds rectangle and a list of pointers to item templates.

The following sections provide the templates that give the standard Open File and
Save File dialog boxes. All of the templates depend on the following strings:

Strings
Save St r
OpenStr
Clos eStr
Drive Str
Canc e 1Str
FolderSt r
KbF r eeStr

start
str ' Save '
str ' Open '
str ' Close '
str ' Ne xt Drive '
str ' Cancel '
str ' New Folder '
str ' AO free of Al K. '; Dia l og Manager routine

ParamText replaces AO and
; Al wit h real values from disk

end

Templates for the standard Open File dialog box
For the Open File dialog box, the item part of the template must include the following
items in this exact order:

Item Item type ID
Open button button Item 1
Close button button Item 2
Next button button Item 3
Cancel button buttonitem 4
Scroll bar scrollBaritem 5

•!• Note: The Standard File dialog box only allows standard scroll bar operations;
it does not allow custom scroll bar routines.

Path
Files
Prompt

useritem
useritem
useritem

6
7
8

22-4 Chapter 22: Standard File Operations Tool Set

640 mode

GetDialog640 start
using Strings

de i ' 0 , 0,114 , 400 '
de i '-1 '
de i4 ' 0 '
de i4 ' 0penBut640 '
de i4 ' CloseBut640 '
de i4 ' NextBut 640 1

de i4 ' Canee1But640 '
de i4 ' Seroll640 '
de i4 ' Path640 '
de i4 ' Files640 '
de i4 ' Prornpt640 '
de i4 ' 0 '

OpenBut640 de i ' l '
de i ' 53 , 265 , 65,375 '
de i ' Buttonitern '
de i4 ' 0penStr '
de i 1 0 1

de i ' O'
de i4 ' 0 '

CloseBut640 de i 1 2 1

de i ' 71 , 265 , 83 , 375 '
de i 1 Buttonitern 1

de i4 ' CloseStr '
de i ' O'
de i ' O'
de i4 ' 0 '

NextBut640 de i 1 3 1

de i ' 27 , 265 , 39 , 375 '
de i ' Buttonitern '
de i4 ' DriveStr '
de i ' O'
de i ' O'
de i4 ' 0 '

Canee1But640 de i I 4 I

de i 1 97,265 , 109 , 375 1

de i 1 Buttonitem 1

de i4 ' Canee1Str '
de i ' O'
de i 10 1

de i4 ' 0 '

Seroll640 de i ' S '
de i ' 28 , 214 , 110 , 238 '
de i ' Serol lBarit em '
de i4 ' 0 '
de i ' O'
de i 1 3 1

de i4 ' 0 '

Standard Fi le dialog templates 22-5

Path640 de i I 6 I
de i ' 12 , 49, 24 , 395 '
de i ' User!tem '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0

Files640 de i ' 7 '
de i ' 28 , 15 , 110 , 215 '
de i ' User!tem '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0 '

Prompt640 de i 1 8 1

de i ' 00 , 15 , 12 , 395 '
de i ' User!tem+$8000 '
de i4 ' 0 '
de i'O '
de i ' O'
de i4 ' 0 '

end

320 mode

GetDialog320 start
us ing Strings

de i ' 0 , 0 , 114 ,2 60 '
de i 1 - l 1

de i4 ' 0 '
de i4 ' 0penBut320 '
de i4 ' CloseBut320 '
de i4 ' NextBut320'
de i4 ' Canee1But320 '
de i4'Seroll320 '
de i4 ' Path320 '
de i4 ' Files320 '
de i4 ' Prompt320 '
de i4 ' 0 '

OpenBut320 de i ' l '
de i ' 53 , 160 , 65 , 255 '
de i ' Button!tem '
de i4 ' 0penStr '
de i ' O'
de i ' O'
de i4 ' 0 '

22-6 Chapter 22: Standard File Operations Tool Set

CloseBut320 de i ' 2 '
de i ' 71 , 160 , 83 , 255 '
de i ' Buttonitern '
de i4 ' CloseStr '
de i 1 0 1

de i ' O'
de i4 ' 0 '

NextBut320 de i ' 3 '
de i ' 27 , 160 , 39 , 255 '
de i ' Buttonitern '
de i4 ' DriveStr '
de i 1 0 '
de i 1 0 1

de i4 ' 0 '

Canee1But320 de i I 4 I

de i ' 97 , 160 , 109 , 255 '
de i ' Button Item '
de i4 ' Canee1Str '
de i 1 0 1

de i ' O'
de i4 ' 0 '

Seroll320 de i ' 5 '
de i ' 27 , 139 , 109 , 151 '
de i ' SerollBaritern '
de i4 ' 0 '
de i ' O'
de i ' 3 '
de i4 ' 0 '

Path320 de i 1 6 1

de i ' l4 , 22 , 26 , 256 '
de i ' Useritern '
de i4 ' 0 '
de i 1 0 1

de i 1 0 1

de i4 ' 0 '

Files320 de i 1 7 1

de i ' 27 , 05 , 109 , 140 '
de i ' Useritern '
de i4 ' 0 '
de i ' 0 1

de i 1 0 1

de i4 ' 0 '

Prornpt320 de i 1 8 1

de i ' 00 , 05 , 13 , 255 '
de i ' Useritern+$8000 '
de i4 ' 0 '
de i 1 0 1

de i ' O'
de i4 ' 0 '

end

Standard File dialog templa tes 22-7

Templates for the standard Save File dialog box

For the Save File dialog box, the item part of the template must include the following
items in this exact order:

Item Item type ID
Save button button Ite m 1
Open button button Ite m 2
Close button button Item 3
Next button button Item 4
Cancel button button Item 5
Scroll bar scrollBaritem 6
Path userite m 7
Files useritem 8
Prompt userite m 9
Filename edi tite m 10
Free space statText 11
Create button button 12

640 mode

PutDialog640 start
using Strings

de i ' 0 , 0 , 120 , 320 '
de i ' - 1 '
de i4 ' 0 '
de i4 ' SaveButP640 '
de i4 ' 0penButP640 '
de i4 ' CloseButP640 '
de i4 ' NextButP640 '
de i4 ' CaneelButP640 '
de i4 ' SerollP640 '
de i4 ' PathP640 '
de i4 ' FilesP640 '
de i4 ' PromptP640 '
de i4 ' EditP640 '
de i4 ' StatTextP640 '
de i4 ' CreateButP640 '
de i4 ' 0 '

Save ButP 64 0 de i 1 l 1

de i ' 87 , 204 , 99 , 310 '
de i ' Buttonitem '
de i4 ' SaveStr '
de i ' O'
de i 1 0 '
de i4 ' 0 '

22-8 Chapter 22: Standard File Operations Tool Set

OpenButP640 de i ' 2 '
de i ' 49 , 204 , 61 , 310 '
de i ' Buttonitem '
de i4 ' 0penStr '
de i 1 0 1

de i ' O'
de i4 ' 0 '

CloseButP640 de i ' 3 '
de i ' 64 , 204 , 76 , 310 '
de i ' Buttonitem '
de i4 ' CloseStr '
de i 1 0 '
de i ' O'
de i4 ' 0 '

NextButP 64 0 de i I 4 I

de i ' lS , 204 , 27 , 310 '
de i ' Buttonitem '
de i4 ' DriveStr '
de i ' O'
de i ' O'
de i4 ' 0 '

CaneelButP640 de i ' S '
de i ' l04 , 204 , 116 , 310 '
de i ' Buttonitem '
de i4 ' Canee1Str '
de i ' O'
de i ' O'
de i4 ' 0 '

SerollP640 de i I 6 1

de i ' 26 , 169 , 88 , 194 '
de i ' SerollBaritem'
de i4 ' 0 '
de i 10 1

de i 1 3 '
de i4 ' 0 '

PathP640 de i ' 7 '
de i ' 00 , 10 , 12 , 315 '
de i ' Useritem '
de i4 ' 0 '
de i 1 0 1

de i ' O'
de i4 ' 0 '

FilesP640 de i ' 8 '
de i ' 26 , 10 , 88 , 17 0 '
de i ' Useritem '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0 '

Standard File dialog templates 22-9

PromptP640 de i I 9'
de i 1 88,10,100,200 '
de i ' Useritem+$8000'
de i4 ' 0 '
de i 1 0 1

de i'O '
de i4 ' 0 '

EditP640 de i ' 10 '
de i'l00,10, 118 , 194 '
de i'EditLine '
de i4'00'
de i ' 15 '
de i ' O'
de i4'0 '

StatTextP640 de i ' ll'
de i ' 12 , 10,22 , 200 '
de i ' StatText+$8000 '
de i4 ' KbFreeStr '
de i ' O'
de i I O I

de i4 ' 0 '

CreateButP640 de i'12 '
de i ' 29,204,41 , 310 '
de i ' Buttonitem '
de i4'FolderStr '
de i ' O'
de i 1 0 1

de i4'0 '

end

320 mode

PutDialog320 start
using Strings

de i ' 0 , 0 , 128,270 '
de i ' -1 '
de i4 ' 0 '
de i4 ' SaveButP320 '
de i4 ' 0penButP320 '
de i4 ' CloseButP320 '
de i4'NextButP320 '
de i4 ' Canee1ButP320 '
de i4 ' SerollP320 '
de i4 ' PathP320 '
de i4 ' FilesP320 '
de i4 ' PromptP320 '
de i4'EditP320 '
de i4 ' StatTextP320 '
de i4 ' CreateButP320 '
de i4 1 0 1

22-10 Chapter 22: Standard FIie Operations Tool Set

SaveButP320 de i I l '
de i ' 93,165 , 105 , 265 '
de i ' Buttonitem '
de i4 ' SaveStr '
de i ' O'
de i 1 0 1

de i4 ' 0 '

OpenButP320 de i 1 2 1

de i ' 54 , 165 , 66 , 265 '
de i ' Buttonitem '
de i4 ' 0penStr '
de i 1 0 1

de i ' O'
de i4 ' 0 '

CloseButP320 de i 1 3 1

de i ' 72 ,165 , 84 , 265 '
de i ' Buttonitem '
de i4 ' CloseStr '
de i'O '
de i ' O'
de i4 ' 0 '

NextButP320 de i ' 4 '
de i ' lS , 165 , 27 , 265 '
de i ' Buttonitem '
de i4 ' DriveStr '
de i ' O'
de i ' O'
de i4 ' 0 '

CaneelButP320 de i ' S '
de i ' lll , 165 , 123 , 265 '
de i ' Buttonitem '
de i4 ' Canee1Str '
de i ' O'
de i 1 0 1

de i4 ' 0 '

SerollP320 de i I 6 I
de i ' 26 , 144 , 88,157 '
de i ' SerollBaritem '
de i4 ' 0 '
de i 1 0 1

de i ' 3 '
de i4 ' 0 '

Standard FIie dialog templates 22-11

PathP320 de i ' 7 '
de i ' 00 , 10 , 12 , 265 '
de i ' Useritem '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0 '

FilesP320 de i 1 8 '
de i ' 26 , 10 , 88 , 145 '
de i ' Useritem '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0 '

PromptP320 de i ' 9 '
de i 1 88 , 10 , 100 , 170 '
de i ' Useritem+$8000 '
de i4 ' 0 '
de i ' O'
de i ' O'
de i4 ' 0 '

EditP320 de i ' l0 '
de i ' l00 , 10 , 118 , 157 '
de i ' EditLine '
de i4 ' TitleWin '
de i ' l5 '
de i 1 0 1

de i4 ' 0 '

StatTextP320 de i ' ll '
de i ' l2 , 10 , 22 , 160 '
de i ' StatText+$8000 '
de i4 ' KbFreeStr '
de i ' O'
de i ' O'
de i4 ' 0 '

CreateButP320 de i ' l2 '
de i ' 33 , 165 , 45 , 265 '
de i ' Buttonitem '
de i 4' Folde r Str '
de i ' O'
de i ' O'
de i4 ' 0 '

See Chapter 6, "Dialog Manager," in Volume 1 for further details.

The bounding rectangle for the Files user item determines how many files may be
displayed at one time. You should set the height of this rectangle to 2 plus 10 times
the number of files to show. A height of 122 would allow 12 files to be seen.

22-12 Chapter 22: Standard File Operations Tool Set

Using the Standard File Operations Tool Set
This section discusses how the Standard File Operations Tool Set routines fit into the
general flow of an application and gives you an idea of which routines you'll need to
use under normal circumstances. Each routine is described in detail later in this
chapter.

The Standard File Operations Tool Set depends on the presence of the tool sets
shown in Table 22-2 and requires that at least the indicated version of each tool set be
present.

Table 22-2
Standard File Operations Tool Set-other tool sets required

Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 QuickDraw II 1.0
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$10 #16 Control Manager 1.3
$OF #15 Menu Manager 1.3
$14 #20 LineEdit Tool Set 1.0
$15 #21 Dialog Manager 1.1

To use the Standard File Operations Tool Set routines, your application must call the
SFStartUp routine before making any other Standard File calls. To save memory
space, you can choose to have your application make the SFStartUp call only when it
needs to present the dialog boxes. Use the LoadOneTool routine in the Tool Locator
if you wish to use this method. See the section "SFStartUp" in this chapter for an
example .

Use the SFShutDown routine to shut down the Standard File Operations Tool Set after
you have finished using it. If you wish, you can unload the tool set with the Tool
Locator routine UnLoadOneTool, which will unload the tool set from memory and
thus save space.

Important

If you choose to unload the Standard File Operations Tool Set, be sure to reload
it with a LoadOneTool call before making the SFStartUp call again.

Using the Standard File Operations Tool Set 22-13

When the user makes a request to open a file, use the SFGetFile routine in your
application to present the standard Open File dialog box and retrieve the file name.
SFGetFile allows you to specify where the standard dialog box will be placed on the
screen, specify the prompt at the top of the box, and filter the type of files to be
displayed in the box. The routine does not allow you to modify the appearance of
the box; if you wish to construct your own custom dialog box, use the SFPGetFile
routine .

When the user makes a request to save a file, use the SFPutFile routine to present the
standard dialog Save File dialog box. SFPutFile allows you to specify where the
standard dialog box will be placed on the screen, the prompt at the top of the box,
and the maximum number of characters the user may type.

Like SFGetFile, SFPutFile does not allow you to modify the appearance of the box; if
you wish to construct your own custom dialog box, use the SFPPutFile routine.

22-14 Chapter 22: Standard File Operations Tool Set

$0117 SFBootlnit
Initializes Standard File Operations Tool Set; called only by the Tool Locator.

Warning

An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

Standard File Operations Tool Set housekeeping routines 22-15

$0217

Parameters

SFStartUp
Starts up the Standard File Operations Tool Set for use by an application.

Important

Your application must make this call before it makes any other Standard File
calls.

You may choose to have your application call SFStartUp only when it is needed, thus
freeing memory for other uses. The number of the Standard File Operations Tool Set
is $17, so a typical sequence of calls (in a pseudocode format) might be

LoadOneTool ($17,$0101)
SFStartUp (appropriate parameters)
SFGetFile (appropriate parameters)
SFShutDown
UnloadOneTool ($17)

Stack before call

previous contents

user!D

dPageAddr

Word-ID number of application

Word-Bank $0 starting address for one page of direct-page space

f-SP

Stack after call

previous contents I
--------- f- SP

Errors None

C extern pascal void SFStartUp (userID , dPageAddr)

Wo rd user ID ;

Wo r d dPageAdd r ;

22-16 Standard File Operations Tool Set housekeeping routines

$0317

Parameters

Errors

C

SFShutDown
Shuts down the Standard File Operations Tool Set. Your application may call
SFShutDown immediately after Standard File Operations are completed, thus freeing
memory for other uses.

Important
If your application has started up Standard FIie Operations, the application must
make this ca ll before it quits.

The number of the Standard File Operations Tool Set is $17, so a typical sequence of
calls (in a pseudocode format) might be

LoadOneTool ($17,$0101)
SFStartUp (appropriate parameters)
SFGetFile (appropriate parameters)
SFShutDown
UnloadOneTool ($17)

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pascal void SFShutDown ()

Standard File Opera tions Tool Set housekeep ing routines 22-17

$0417 SFVersion
Returns the version number of the Standard File Operations Tool Set.

Parameters

Stack before call

previous contents

wordspace Word-Space for result

~SP

Stack after call

previous contents

versionlnfo Word- Version number of Standard File Operations Tool Set

~SP

Errors None

C extern pascal Word SFVersion ()

$0517 SFReset
Resets the Standard File Operations Tool Set; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

22-18 Standard File Operations Tool Set housekeeping routines

$0617 SFStatus
Indicates whether the Standard File Operations Tool Set is active.

SFStatus returns TRUE if SFStartUp has been called and SFShutDown has not been
called. The routine returns FALSE if SFStartUp has not been called at all or if
SFShutDown has been called since the last time SFStartUp was called.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

activeF/ag

Errors None

Word-Space for result

f- SP

Word-BOOLEAN; TRUE if Standard File active, FALSE if inactive

f-SP

C e xtern pascal Boolean SFStatus()

Standard File Operations Tool Set housekeeping routines 22-19

$0Dl7

Parameters

SFAIICaps
Allows an application to decide if filenames will be displayed in all uppercase letters
or in uppercase and lowercase letters. If allCapsFlag is set to FALSE, the initial letter
of the filename will be uppercase and the first letter after a period will be uppercase;
all other letters will be lowercase.

Stack before call

previous contents

al!CapsFlag Word-BOOLEAN; TRUE for uppercase filenames, FALSE for mixed

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SFAllCaps(allCapsFlag)

Boolean allCapsFlag;

22-20 Standard File Operations Tool Set routines

$0917

Parameters

SFGetFile
Displays the standard Open File dialog box and returns information about the file
selected by the user.

Stack before call

previous contents

whereX

whereY

-- promptPtr

-- filterProcPtr

-- typeListPtr

-- replyPtr

--·

--·

--·

--·

Word-INTEGER; X coordinate of upper left corner of dialog box

Word-INTEGER; Y coordinate of upper left corner of dialog box

Long-POINTER to string to display at top of dialog box

Long-POINTER to filter procedure; NIL for none

Long-POINTER to typelist record; NIL to display all files

Long-POINTER to a reply record

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void SFGetFile (whereX,whereY ,promptPtr ,

filterProcPtr,typeListPtr,replyPtr)

Integer whereX;

Integer whereY;

Pointer promptPtr;

WordProcPtr filterProcPtr;

Pointer typeListPtr ;

SFReplyRecPtr replyPtr ;

Standard File Operations Tool Set routines 22-21

You can also use the following alternate form of the call:

e xtern pascal v oid SFGetFile (where , promptPtr ,
filte r ProcPtr , typeListPtr , replyPtr)

where ; Po i nt

Po i nter promptPtr ;

WordP r ocPtr filterProcPtr ;

Po i nt e r typeListPtr ;

SFReplyRecPtr replyPtr ;

More about parameters
The filter procedure pointed to by filterProcPtr determines which files will be
displayed in the dialog box. SetfilterProcPtrto NIL to prevent the procedure from
being called. The filter procedure is called in full native mode, in the same way as
one would call a Pascal function having one long parameter.

The calling sequence inside SFGetFile is as follows:

Pu shWord #0

PushLong #DirEntry

jsl FilterProc

PopWo rd Re s ult

Space for result

Pointer to director y entry ($27 bytes long)

The procedure must strip the four bytes of the directory entry off the stack and return
with the result at the top of the stack. The result indicates what the procedure wants to
do with the file, as shown in Table 22-3.

Table 22-3
Filter procedure results

Value

0
1
2

Name

noDisplay
noSelect
displaySelect

Description

Don't display file
Display file but don't allow user to select the file
Display file and allow user to select the file

The directory entry for the file is illustrated in Figure 22-3 .

22-22 Standard File Operations Tool Set routines

Offset ~-----.-------,
$0 storoge_type I nome_length

1------~-------1

1

2:
OF
10
11
12
13
14
15
16
17
18
19
lA
18
lC
lD
lE
1 F
20
21
22
23
24
25
26

-

-
-
--

1--

--
1--

-
Figure 22-3

~·1e name I -

file_type

key_pointer

b/ocks_used

EOF

creation
dote and time

version

min_ version

access

oux_type

modification
dote and time

heoder_pointer

File directory entry

-

-

-

-
-

-
-
-

-

-
-
-

-

Field

1 byte

15 bytes

1 byte

2 bytes

2 bytes

3 bytes

4 bytes

1 byte

1 byte
1 byte

2 bytes

4 bytes

2 bytes

For more information on the fields of the directory entry, see the Apple !!GS
ProDOS 16 Reference.

The typeListPtr parameter points to a record containing a list of file types to display
(set the pointer to NIL to display all file types). The list has the form shown in
Figure 22-4.

Offset Field
~----~

$0 1---n_u_m_En_tr_fes_-1 Byte-Total number of entries in list

1--_m_er_vP_e_1_-1 Byte-First file type to display
2 tifeType2 Byte-Second file type to display

' '

1---,a-s-tt1-,e-Typ-e--1I Byte-Last file type to display

Figure 22-4
Typellst record

(continued)

Standard File Operations Tool Set routines 22-23

If you specify both a .filterProcPtr and a typelistPtr, only files of the right file type or
types are passed on to the filterProc procedure.

The replyPtr parameter points to a reply record that has the form shown in
Figure 22-5.

Offset Field

so
good

2 fileType
3

4

5
ouxFifeType

6

fifeNome

15 1-------1

16

fuf/Po thnome

' '

LJ
Figure 22-5
Reply record

Word-BOOLEAN; TRUE for open, FALSE for cancel

Word-ProDOS file type

Word-ProDOS auxi liary file type

16 bytes-Name of file in prefix 0

129 bytes-Full pathname of file in prefix 0

When the dialog box is displayed, the files from prefix O are shown. When the file is
selected, the name of the file is returned in the record pointed to by replyPtr and
prefix O is set to the directory containing the selected file. If the user cancels the
operation, prefix O is left at whatever directory is being shown at the time.

•!• Macintosh programmers: The Disk button works differently from the Drive
button in the Macintosh. When a user clicks on the Disk button, Standard File
first looks at the disk in the drive the current disk is expected to be in. If the
current disk is no longer in that drive, the disk in that drive becomes the current
disk. If the current disk is still there, the Disk button moves to the next disk in the
ProDOS chain. The Disk button works this way because a user can change disks
without the system knowing about it.

22-24 Standard File Operations Tool Set routines

$0B17 SFPGetFile
Displays a custom Open File dialog box and returns information about the file
selected by the user.

Parameters

Stack before call

previous contents

whereX

whereY

-- promptPtr

-- filterProcPtr

-- typeListPtr

-- dlgTempPtr

--·

--·

- -·

--·

Word- INTEGER; X coordinate of upper left corner of dialog box

Word- INTEGER; Y coordinate of upper left corner of dialog box

Long-POINTER to string to display at top of dialog box

Long-POINTER to filter procedure; NIL for none

Long-POINTER to a typelist record; NIL to display all files

Long- POINTER to a dialog template in memory

-- dia logHookPtr --· Long-POINTER to a routine called every time Moda!Dialog returns a hit

-- replyPtr

Stack after call

--· Long-POINTER to a reply record

~SP

previous contents I
---------~SP

Errors

C

None

extern pascal void SFPGetFile (whereX, whereY , prornpt Ptr , filterProcPtr ,

typeListPtr , dlgTernpPtr , dialogHookPtr , rep l yPtr)

Integer whereX ;

Integer whereY ;

Pointer prornptPtr ;

WordProcPtr filterProcPtr ;

Pointer typeListPtr ;

DlgTernpPtr dlgTernpPtr ;

Standard File Operations Tool Set routines 22-25

VoidProcPtr dia logHookPtr ;

SFReplyRecPtr r e plyPtr ;

The dlgTempPtr and dialogHookPtr parameters
SFPGetFile works like SFGetFile, except for the addition of the dlgTempPtr and
dialogHookPtr parameters. The dlgTempPtr provides a pointer to a dialog
template; the template is a record passed to the Dialog Manager routine
GetNewModalDialog. The template contains information about the dialog to be
created, including a bounds rectangle and a list of pointers to item templates.

For the Open File dialog box, the item part of the template must include the following
items in this exact order:

Item Item type ID
Open button buttonltem 1
Close button buttonltem 2
Next button buttonltem 3
Cancel button buttonltem 4
Scroll bar scrollbarltem 5

•!• Note: The Standard File dialog box only allows standard scroll bar operations;
it does not allow custom scroll bar routines.

Path
Files
Prompt

userltem
userltem
userltem

6
7
8

For more information and examples of dialog templates, see the section "Standard
File Dialog Templates" in this chapter.

The dialogHookPtr parameter is a pointer to the routine called by SFPGetFile every
time ModalDialog returns an item hit. The routine is passed a pointer to the dialog
port and a pointer to the item-hit word. If the dialogHook routine wants to handle
the item hit, it should handle it and set the hit to 0. If it wants SFPGetFile to handle
the item hit, it should leave it unchanged.

The routine is called as follows:

PushLong #DialogPort

Pu s hLong #ItemHit

j s l DialogHook

l d a ItemHit

Your routine must be certain to strip the two longs (eight bytes) representing the
DialogPort and ItemI-Iit pointers off the stack before returning to SFPGetFile.

22-26 Standard File Operations Tool Set routines

$0C17 SFPPutFile
Displays a custom Save File dialog box and returns information about the name of the
file to be saved.

Parameters

Stack before call

previous contents

whereX

whereY

-- promptPtr

-- origNamePtr

maxlen

-- dlgTempPtr

--·

--·

--·

Word-INTEGER; X coordinate of upper left corner of dialog box

Word-INTEGER; Y coordinate of upper left corner of dialog box

Long-POINTER to string to display at top of dialog box

Long-POINTER to string holding name that appears as default

Word-INTEGER; maximum number of characters user may type

Long-POINTER to a dialog template in memory

-- dia logHookPtr --· Long-POINTER to a routine called every time ModalDialog returns a hit

-- replyPtr

Stack after call

-- Long-POINTER to a reply record

~SP

previous contents I
i-------- ~ SP

Errors None

Standard File Operations Tool Set routines 22-27

C

22-28

extern pascal void SFPPutFile(whereX,whereY,promptPtr , origNamePtr , maxLen,

dlgTempPt r , dialogHookPtr , replyPtr)

I nteger whereX;

Integer whereY;

Pointer promptPtr ;

Pointer origNamePtr;

unsig ned int maxLen ;

DlgTempPtr dlgTempPtr ;

VoidProcPtr dialogHookPtr ;

SFReplyRecPtr replyPtr ;

You can also use the following alternate form of the call:

e xtern pascal void SFPPutFile(where,promptPtr,origNamePtr , maxLen , dlgTempPtr ,
dial ogHookPtr , replyPtr)

Point

Pointer

Pointer

where;

promptPtr ;

origNamePtr;

unsigned int maxLen;

DlgTempPtr dlgTempPtr ;

VoidProcPt r dialogHookPtr ;

SFReplyRecPtr replyPtr;

Standard Fi le Operations Tool Set routines

The dlgTempPtr and dialogHookPtr parameters
This routine works like SFPutFile, except for the addition of the dlgTempPtr and
dialogHookPtr parameters. The dlgTempPtr provides a pointer to a dialog
template; the template is a record passed to the Dialog Manager routine
GetNewModa!Dialog. The template contains information about the dialog to be
created, including a bounds rectangle and a list of pointers to item templates.

The item part of the template must include the following items in this exact order:

Item Item type ID
Save button buttonltem 1
Open button buttonltem 2
Close button buttonltem 3
Next button buttonltem 4
Cancel button buttonltem 5
Scroll bar scrol!Barltem 6
Path userltem 7
Files userltem 8
Prompt userltem 9
Filename editltem 10
Free space statText 11
Create button button 12

For more information and examples of dialog templates, see the section "Standard
File Dialog Templates" in this chapter and Chapter 6, "Dialog Manager," in
Volume 1 for further details .

The bounding rectangle for the Files user item determines how many files may be
displayed. You should set the height of this rectangle to 2 plus 10 times the number
of files to show at one time. A height of 122 would allow 12 files to be seen at one
time.

The dialogHookPtr parameter is a pointer to the routine called by SFPPutFile every
time Moda!Dialog returns an item hit. The routine is passed a pointer to the dialog
port and a pointer to the item-hit word. If the DialogHook routine wants to handle
the item hit, it should handle it and set the hit to 0. If the DialogHook routine wants
SFPPutFile to handle the item hit, it should leave the hit unchanged.

The routine is called as follows in assembly language:

PushLong #DialogPort

PushLong #ItemHit

jsl Dia l ogHook

l d a ItemHit

Your routine must be certain to strip the two longs (eight bytes) representing the
DialogPort and the ItemHit off the stack before returning to SFPPutFile.

Standard File Operations Tool Set routines 22-29

$0A17

Parameters

SFPutFile
Displays the standard Save File dialog box and returns information about the name of
the file to be saved.

Stack before call

prevtous contents

whereX

whereY

-- promptPtr --·

Word-INTEGER; X coordinate of upper left corner of dialog box

Word-INTEGER; Y coordinate of upper left corner of dialog box

Long-POINTER to string to display at top of dialog box

-- ortgNamePtr -- · Long-POINTER to string holding name that appears as default

Word-INTEGER; maximum number of characters user may type

Long-POINTER to a reply record

maxlen

-- replyPtr --·

f- SP

Stack after call

prevtous contents I
-------- f- SP

Errors

C

22-30

None

extern pascal void SFP utFile (whereX , whereY , promptPtr ,

origNamePtr , ma xLen , replyPtr)

I nteger whereX ;

Integer whereY ;

Pointer promptPtr ;

Pointer origNamePtr ;

uns i gne d i nt max Len;

SFReplyRecPt r replyPtr ;

Standard File Operations Tool Set routines

You can also use the following alternate form of the call:

extern pascal void SFPutFile (where , prornptPtr , origNa rnePtr,rnaxLen , replyPtr)

Point where ;

Pointer prornptPtr ;

Pointer origNarnePtr ;

unsigned int

SFReplyRecPtr

More about parameters

rnaxLen ;

replyPtr ;

The maxlen parameter specifies the maximum number of characters a user may
type. Most applications will use 15 for this value, but if the application wants to add a
suffix to the file name, the maxlen value must be shortened. Values greater than 15
are not valid.

The replyPtr points to the same type of reply record as that of SFGetFile. See
Figure 22-5 in the section "SFGetFile" in this chapter.

When the dialog box is first displayed, all the files from prefix O are shown. This lets
the user know what names are in use and prevents use of a name that already exists.
The user can open any directories shown as selectable; files not shown as selectable
cannot be opened. When the user clicks on the Save button or presses the Return
key, the name of the file is returned in the reply record and prefix O is set to the
directory containing the selected file . If the user cancels the operation, prefix O is
restored to its original state.

SFPutFile also checks to see if the file already exists. If it does, SFPutFile displays a
dialog asking if is OK to destroy the existing file.

If the user cancels the operation, prefix O is left at whatever directory is being shown
at the time.

•!• Macintosh programmers: The Disk button works differently from the Drive button
in the Macintosh. When a user clicks on the Disk button, Standard File first looks at
the disk in the drive the current disk is expected to be in. If the current disk is no
longer in that drive, the disk in that drive becomes the current disk. If the current
disk is still there, the Disk button moves to the next disk in the ProDOS chain. The
Disk button works this way because a user can change disks without the system
knowing about it.

Standard FIie Operations Tool Set routines 22-31

Standard File Operations Tool Set summary
This section briefly summarizes the constants and data structures contained in the
Standard File Operations Tool Set. There are no tool set error codes for the Standard
File Operations Tool Set.

Important

These definitions are provided in the appropriate Interface f ile.

Table 22-4
Standard File Operations Tool Set constants

Name Value

Filter procedure results
noDisplay $0000
no Select $0001
displaySelect $0002

Table 22-5

Description

Don't display file
Display file, but don't allow user to select it
Display file and allow user to select it

Standard File Operations Tool Set data structures

Name Offset Type Definition

Reply record
good $00 Boolean TRUE for Open, FALSE for Cancel
fileType $02 Word ProDOS file type
auxFileType $04 Word ProDOS aux file type
fileName $06 16 bytes Name of the file in prefix .0
ful!Pathname $16 129 bytes Full pathname of selected file

Note: The actual assembly-language equates have a lowercase letter o in front of all of the
names given in this table .

22-32 Chapter 22: Standard Fi le Operations Tool Set summary

Chapter 23

Text Tool Set

The Text Tool Set provides an interface between Apple II character device drivers,
which must be executed in emulation mode, and new applications running in native
mode. It also provides a means of redirection of I/0 through RAM-based drivers.
The Text Tool Set makes it possible to deal with the text screen without switching
65816 processor modes and moving to bank zero. Dispatches to RAM-based drivers
will occur in full native mode.

A preview of the Text Tool Set routines
To introduce you to the capabilities of the Text Tool Set, all of its routines are
grouped by function and briefly described in Table 23-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the Text Tool Set
routines (discussed in alphabetical order).

Table 23-1
Text Tool Set routines and their functions

Routine Description

Housekeeping routines
TextBootlnit Initializes the Text Tool Set; called only by the Tool Locator-must not be called by

TextStartUp
TextShutDown
TextVersion
TextReset

TextStatus

an application
Starts up the Text Tool Set for use by an application
Shuts down the Text Tool Set when an application quits
Returns the version number of the Text Tool Set
Resets the Text Tool Set; called only when the system is reset-must not be called by
an application
Indicates whether the Text Tool Set is active

(continued)

23-1

Table 23-1 (continued)
Text Tool Set routines and their functions

Routine Description

Text global functions

SetinGlobals Sets the global parameters for the input device
SetOutGlobals Sets the global parameters for the output device
SetErrGlobals Sets the global parameters for the error output device
GetinGlobals Returns the current values for the input device global parameters
GetOutGlobals Returns the current values for the output device global parameters
GetErrGlobals Returns the current values for the error output device global parameters

1/0 directing routines

SetinputDevice Sets the input device to a specified type and location
SetOutputDevice Sets the output device to a specified type and location
SetErrorDevice Sets the error output device to a specified type and location
GetlnputDevice Returns the type of driver installed as the input device
GetOutputDevice Returns the type of driver installed as the output device
GetErrorDevice Returns the type of driver installed as the error output device

Text routines
InitTextDev
CtlTextDev
StatusTextDev
WriteChar

ErrWriteChar

WriteLine

ErrWriteLine

WriteString

ErrWriteString

TextWriteBlock

ErrWriteBlock

WriteCString

ErrWriteCString

Initializes a specified text device
Passes a control code to a specified text device
Executes a status call to a specified text device
Combines a specified character with the output global AND mask and OR mask and
writes the character to the output text device
Combines a specified character with the output global AND mask and OR mask and
writes the character to the error output text device
Combines a pointed-to Pascal-type string (first byte of string specifies length) with
the output global masks, concatenates a carriage return (for BASIC or RAM-based
drivers) or a carriage return and line feed (for Pascal drivers), and then writes the
string to the output text device
Combines a pointed-to Pascal-type string (first byte of string specifies length) with
the output global masks and then writes the string to the error output text device
Combines a pointed-to Pascal-type string (first byte of string specifies length) with
the output global masks and then writes the string to the output text device
Combines a pointed-to Pascal-type string (first byte of string specifies length) with
the output global masks and then writes the string to the error output text device
Combines a specified character string with the output global masks and then writes
the string to the output text device
Combines a specified character string with the output global masks and then writes
the string to the error output text device
Combines a pointed-to C string (string terminates with $00) with the output global
masks and then writes the string to the output text device
Combines a pointed-to C string (string terminates with $00) with the output global
masks and then writes the string to the error output text device

23-2 Chapter 23: Text Tool Set

Table 23-1 (continued)
Text Tool Set routines and their functions

Routine Description

ReadChar Reads a character obtained from the input text device, combines it with the input
global masks, and returns the character on the stack

ReadLine Reads a character string from the input text device, combines it with the input global
masks, and writes the string to a specified memory location

TextReadBlock Reads a block of characters from the input text device, combines it with the input
global masks, and writes the block to a specified memory location

Using the 1/0 directing routines

The I/0 directing routines direct 1/ 0 from the Text Tool Set to a specific type of
character device driver or get information about the directing of a specific I/0
driver. The types of character device drivers are listed in Table 23-2.

Table 23-2
Character device driver types

Type Description

0 BASIC device driver
1 Pascal device driver
2 RAM-based device driver

:e::3 Illegal driver type

BASIC device drivers must support the standard Apple II BASIC device driver entry
points (INIT, INPUT, and OUTPUT).

•!• Note: BASIC devices use the Apple II I/ 0 hooks ($36-$39) in absolute zero
page.

Any desk accessories using a Text Tool BASIC device driver should save and restore
the global masks , device descriptors, and I/0 hooks when entering or leaving the
desk accessory.

Pascal device drivers must support the standard Apple II Pascal 1.1 device driver
entry points (INIT, READ, WRITE, and status) . The optional Pascal 1.1 control entry
point is supported by the Text Tool Set but does not necessarily have to be supported
by the device. The application must find out if the device supports the optional
Pascal entry points.

Using the 1/0 directing routines 23-3

RAM-based device drivers may be located at any address and in any bank. A RAM­
based driver must support five entry points, as follows:

RAMDRIVER Base Address
RAMDRIVER Base Address + 3
RAMDRIVER Base Address+ 6
RAMDRIVER Base Address+ 9
RAMDRIVER Base Address+ 12

INIT (initialization) entry point
READ entry point
WRITE entry point
STATUS entry point
CONTROL entry point

RAM-based drivers are called by the Text Tool Set in native mode Cm and x bits set to
16 bits) and should return to the Text Tools via an RTI instruction. The Text Tools
pass data or ASCII characters to the RAM-based driver via the low-order byte of the
16-bit accumulator.

A RAM-based driver should not make any assumptions about the state of the data
bank register or the direct page register. I/ 0 performed by RAM-based drivers
should operate on a single-character basis. The Text Tool Set, not the RAM-based
driver, manipulates the text with regard to the global masks before passing the text to
the RAM-based driver. All Text Tool Set routines that interface to different string
types are supported by the tool set and not the device.

Using the text routines
The following example demonstrates how to set up global parameters, initialize the
text devices, send output to the error and output devices, and read input from the
input device.

list on

in s time off

a bsaddr on

gen off

s ymbol off

keep testit

65816 on

msb on

mcopy mm.macros

mcopy mi s c . macros

mcopy tt . mac r os

test start

23-4 Chapter 23: Text Tool Set

C2 30

NoErrO

NoErrl

NoErr2

NoErr3

rep #$30

longa on

longi on

Text St art Up

bee

jmp

anop

NoErrO

ToolError

pea $00FF

pea $0080

SetinGlobals

bee NoErrl

jmp ToolError

anop

pea $00FF

pea $0080

SetOutGlobals

bee

jmp

anop

pea

NoErr2

ToolError

$00FF

pea $0080

SetErrGlobals

bee

jmp

anop

pea

pea

pea

NoErr3

ToolError

$0000

$0000

$0003

SetinputDevice

bee

jmp

NoErr4

ToolError

If no error

else

AND mask

OR mask

If no error

else

AND mask

OR mask

If no error

else

AND mask

OR mask

If no error

else

0 = basic driver

in slot #3

If no error

else

Using the text routines 23-5

NoErr4 anop

pea $0000 0 = basic driver

pea $0000 in slot #3

pea $0003

Set Out put Device

bee NoErrS If no error

jmp ToolError else

NoErrS anop

pea $0000 0 = basic driver

pea $0000 in slot #1

pea $0001

SetErrorDevice

bee NoErr6 If no error

jmp ToolError else

NoErr6 anop

pea $0000 Initialize the input device

InitTextDev

bee NoErr7 If no error

jmp ToolError else

NoErr7 anop

pea $0001 Initialize the output device

InitTextDev

bee NoErrB If no error

jmp ToolError else

NoErrB anop

pea $0002 Initialize the error device

InitTextDev

bee NoErr9 If no error

jmp ToolError else

23-6 Chapter 23: Text Tool Set

NoErr9 anop

pha

pea

ReadChar

bee

jmp

NoErrlO anop

pushlong

pea

pea

pea

ReadBlock

bee

jmp

NoErrll anop

$0000

NoErrlO

ToolError

#buffer

$0080

$0100

$0001

NoErrll

ToolError

pushlong #out string

NoErrl2

_WriteCString

bee

jmp

anop

pushlong

NoErrl2

ToolError

#ErrString

_ErrWriteCString

bee NoErrl3

jmp

NoErrl3 anop

rts

ToolError

Space for result

Don ' t echo

Wait for any key

If no error

else

Pointer to input buffer

Offset into buffer

256 characters is max block size

Echo characters to output device

Wait for any key

I f no error

else

Pointer to the output device string

and send it out

If no error

else

Pointer to the error device string

and send it out

If no error

else

Using the text routines 23-7

ToolError anop

FailMsg

pha

pushlong

_SysFailMgr

out string

de

de

de

err string

de

de

de

msb

anop

de

de

end

#FailMsg

anop

Error code for display

Pointer to error message

c ' This string should go on the screen '

h ' 0D '

h ' 00 '

anop

; A carriage return (basic

c ' This string should go on the paper '

h ' OD '

h ' OO '

off

h o 22 I

; A carriage return (basic

; Character count

c ' A tool call returned with error= '

23-8 Chapter 23: Text Tool Set

auto lf)

auto lf)

Using the Text Tool Set
This section discusses how the Text Tool Set routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The Text Tool Set depends on the presence of the tool sets shown in Table 23-3 and
requires that at least the indicated version of the tool set be present.

Table 23-3
Text Tool Set-other tool sets required

Tool set
number

$01 #01
$02 #02

Tool set
name

Tool Locator
Memory Manager

Minimum version
needed

1.0
1.0

Your application should make a TextStartUp call before making any other Text Tool
Set calls.

•!• Note: At the time of publication, the_ TextStartUp call was not an absolute
requirement because the Tool Locator was automatically starting up the Text Tool
Set at boot time. However, you should make the call anyway to guarantee that
your application remains compatible with all future versions of the system.

Your application should also make the TextShutDown call when the application
quits.

The Text Tool Set has global routines that are used to set or read the current global
parameters used by RAM and the Pascal and BASIC text tools. The tool set also has
I/0 directing routines that direct I/0 from the tool set to a specific type of character
device driver or get information about directing a specific I/ 0 driver. Finally, the
tool set has text routines that interface with any BASIC, Pascal 1.1, or RAM-based
character device driver.

Using the Text Tool Set 23-9

$010C TextBootlnit
Initialize,; the Text Tool Set; called only by the Tool Locator.

Warning

An application must never make this call.

TextBootlnit set.s up the default device parameters as follows :

• Input device type is BASIC.

• Output device type is BASIC.

• Error output device type is BASIC.

• Input device resides in slot #3.

• Output device resides in slot #3.

• Error output device resides in slot #3.

• Global input AND mask is set to $FF.

• Global input OR mask is set to $80.

• Global output AND mask is set to $FF.

• Global output OR mask is set to $80.

• Global error output AND mask is set to $FF.

• Global error output OR mask is set to $80.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

23-10 Text Tool Set housekeeping routines

$020C

Parameters

Errors

C

$030C

Parameters

Errors

C

TextStartUp
Starts up the Text Tool Set for use by an application. Your application should make a
TextStartUp call before making any other Text Tool Set calls.

•!• Note : At the time of publication, the TextStartUp call was not an absolute
requirement because the Tool Locator was automatically starting up the Text Tool
Set at boot time. However, you should make the call anyway to guarantee that your
application remains compatible with all future versions of the system.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void TextStartUp ()

TextShutDown
Shuts down the Text Tool Set when an application quits .

Important

If your application has started up the Text Tool Set, the application must make
this call before it quits.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void TextShutDown ()

Text Tool Set housekeeping routines 23-11

$040C TextVersion
Returns the version number of the Text Tool Set.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

f-SP

Word-Version number of Text Tool Set

f-SP

C exte rn pascal Word TextVersion ()

23-12 Text Tool Set housekeeping routines

$050C TextReset
Resets the Text Tool Set; called only when the system is reset.

Warning

An application must never make this call.

Resets the device parameters to the default values as follows:

• Input device type is BASIC.

• Output device type is BASIC.

• Error output device type is BASIC.

• Input device resides in slot #3.

• Output device resides in slot #3.

• Error output device resides in slot #3.

• Global input AND mask is set to $FF.

• Global input OR mask is set to $80.

• Global output AND mask is set to $FF.

• Global output OR mask is set to $80.

• Global error output AND mask is set to $FF.

• Global error output OR mask is set to $80.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

Text Tool Set housekeeping routines 23- 13

$060C TextStatus
Indicates whether the Text Tool Set is active.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

activeFlag

Errors None

Word-Space for result

f-SP

Word-BOOLEAN; TRUE if Text Tool Set active, FALSE if inactive

f- SP

C extern pascal Boolean Te xtStatus ()

23-14 Text Tool Set housekeeping routines

$160C

Parameters

CtlTextDev
Passes a control code to a specified text device. The control codes passed depend on
the device used and are outside the scope of this manual.

For Pascal device drivers, this is an optional entry point that may not be supported by
a particular Pascal device. Because BASIC devices do not support this routine, an
error occurs if this call is made to a BASIC device.

Stack before call

previous contents

deviceNum

control Code

Stack after call

Word-Device to control (0 = input, 1 = output, 2 = error output)

Word-Control code (in low-order byte) to pass to device

f-- SP

previous contents I
-------- f-- SP

Errors $0C01 badDevType Illegal device type

•!• Note: The remaining errors should occur only for Pascal devices.

$0C02

$0C03

$0C04

$0C05

$0C06

$0C07

$0C08

$0C09

$0COA

$0COB

badDevNum

badMode

unDefHW

lostDev

lostFile

badTitle

noRoom

noDevice

noFile

dupFile

$0COC notClosed

Illegal device number

Illegal operation

Undefined hardware error

Lost device: device no longer on-line

File no longer in diskette directory

Illegal filename

Insufficient space on specified diskette

Specified volume not on-line

Specified file not in directory of specified volume

Duplicate file : attempt to rewrite a file when a file of
that name already exists

Attempt to open file that is already open

Text Tool Set routines 23-15

C

23-16

$0COD notOpen

$0COE badFormat

$0COF ringBuffOFlo

$0C10 writeProtected

$0C40 devErr

Attempt to access a closed file

Error in reading real or integer number

Ring buffer overflow: characters arriving faster than
the input buffer can accept them

Specified diskette is write protected

Device error: device failed to complete a read or
write correctly

extern pascal void CtlTextDev (deviceNum , controlCode)

Word deviceNum ;

Word controlCode;

Text Tool Set routines

$1FOC

Parameters

ErrWriteBlock
Combines a specified character string with the output global masks and then writes the
string to the error output text device. The string is specified by the parameters
textPtr + offset, with the length specified by the count parameter .

Stack before call

previous contents

-- textPtr

offset

count

Stack after call

-- Long-POINTER to start of ASCII text

Word-Offset within ASCII text

Word-String length

~SP

previous contents I
-------- ~SP

Errors

C

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pascal void ErrWriteBlock (textPtr , offset , count)

Pointer textPtr ;

Word offset ;

Word count ;

Text Tool Set routines 23-17

$190C

Parameters

ErrWriteChar
Combines a specified character with the output global AND mask and OR mask and
writes the character to the error output text device.

Stack before call

previous contents

theChar

Stack after call

Word-Character to write (in low-order byte)

f-SP

previous contents I
-------- f- SP

Errors

C

23-18

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pascal void ErrWriteChar(theChar)

Word theChar ;

Text Tool Set routines

$210C

Parameters

ErrWriteCString
Combines a pointed-to C-type string (string terminates with $00) with the output
global masks and then writes the string to the error output text device.

Stack before call

previous contents

cStrPtr

Stack after call

Long-POINTER to C-type string to be written

f-SP

previous contents I
-------- f- SP

Errors

C

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pasca l void ErrWriteCString (cStrPtr)

Pointer cStrPtr;

Text Tool Set routines 23-19

$1BOC

Parameters

ErrWriteline
Combines a pointed-to Pascal-type string (first byte of string specifies length) with the
output global masks and then writes the string to the error output text device. For
BASIC and RAM-based drivers, the routine concatenates a carriage return to the
string. For Pascal drivers, the routine concatenates a carriage return and a line feed
to the string.

Stack before call

previous contents

strPtr Long-POINTER to Pascal-type string

Stack after call

previous contents I
- ------- f- SP

Errors Pascal device errors Any of the errors $0C02- $0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

C e xtern pascal void ErrWriteLine (strPtr)

Pointer strPtr ;

23-20 Text Tool Set routines

$1DOC

Parameters

ErrWriteString
Combines a pointed-to Pascal-type string (first byte of string specifies length) with the
output global masks and then writes the string to the error output text device.

Stack before call

previous contents

strPtr

Stack after call

Long-POINTER to Pascal-type string to be written

~SP

previous contents I
-------- ~SP

Errors

C

Pascal device errors Any of the errors $0C02- $0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

e xtern pascal void ErrWr iteString (strPtr)

Pointer strPtr ;

Text Tool Set routines 23-21

$0EOC GetErrGlobals
Returns the current values for the error output device global parameters.

Parameters

Stack before call

previous contents

wordspace

wordspace

Stack after call

previous contents

andMask

orMask

Errors None

Word-Space for result

Word-Space for result

~SP

Word-Global AND mask for error output device (low-order byte only)

Word-Global OR mask for error output device (low-order byte only)

~SP

C extern pascal TxtMaskRec GetErrGlobals()

23-22 Text Tool Set routines

$140C GetErrorDevice
Returns the type of driver installed as the error output device. For BASIC or Pascal
device drivers, also returns the slot number; for RAM-based drivers, returns a pointer
to the jump table.

Parameters

Stack before call

previous contents

wordspace

longspace

Stack after call

previous contents

device Type

ptrOrSlot

Errors None

Word-Space for result

Long- Space for result

f-SP

Word-Error output device type (0 = BASIC, 1 = Pascal, 2 = RAM-based)

Long-Slot number for BASIC or Pascal driver, or
POINTER to jump table for RAM-based driver

f-SP

C extern pascal DeviceRec GetErrorDevice()

Text Tool Set routines 23-23

$0COC GetlnGlobals
Returns the current values for the input device global parameters.

Parameters

Stack before call

previous contents

wordspace

wordspace

Stack after call

previous contents

andMask

orMask

Errors None

Word-Space for result

Word-Space for result

f-SP

Word-Global AND mask for input device (low-order byte only)

Word-Global OR mask for input device (low-order byte only)

f-SP

C e xtern pascal TxtMa s kRec GetinGlobals()

23-24 Text Tool Set routines

$120C GetlnputDevice
Returns the type of driver installed as the input device. For BASIC or Pascal device
drivers, also returns the slot number; for RAM-based drivers, returns a pointer to the
jump table .

Parameters

Stack before call

previous contents

wordspace

longspace

Stack after call

previous contents

device Type

ptrOrSlot

Errors None

Word-Space for result

Long-Space for result

Word-Input device type (0 = BASIC, 1 = Pascal, 2 = RAM-based)

Long-Slot number for BASIC or Pascal driver, or POINTER to jump
table for RAM-based driver

~SP

C extern pascal DeviceRec GetinputDevice ()

Text Tool Set routi nes 23-25

$0DOC GetOutGlobals
Returns the current values for the output device global parameters.

Parameters

Stack before call

previous contents

wordspace

wordspace

Stack after call

previous contents

andMask

orMask

Errors None

Word-Space for result

Word-Space for result

~SP

Word-Global AND mask for output device (low-order byte only)

Word-Global OR mask for output device (low-order byte only)

~SP

C ext e r n pas c a l TxtMaskRec Ge tOut Global s()

23-26 Text Tool Set routines

$130C

Parameters

GetOutputDevice
Returns the type of driver installed as the output device. For BASIC or Pascal device
drivers, also returns the slot number; for RAM-based drivers, returns a pointer to the
jump table.

Stack before call

previous contents

wordspace

longspace

Stack after call

previous contents

device Type

ptrOrSlot

Errors None

Word- Space for result

Long- Space for result

~SP

Word- Output device type (0 = BASIC, 1 = Pascal, 2 = RAM-based)

Long-Slot number for BASIC or Pascal driver, or POINTER to jump
table for RAM-based driver

~SP

C extern pascal DeviceRec GetOutputDevice ()

Text Tool Set routines 23-27

$150C lnitTextDev
Initializes a specified text device.

Parameters

Stack before call

prevtous contents

devtceNum Word-Device to initialize (0 = input, 1 = output, 2 = error output)

~SP

Stack after call

prevtous contents I
--------~SP

Errors $0C01 badDevType Illegal device type

C extern pascal void InitTextDev(deviceNum)

Word deviceNum;

23-28 Text Tool Set routines

$220C ReadChar
Reads a character obtained from the input text device, combines it with the input
global masks, and returns the character on the stack. If echoFlag is set to a value of
$0001, the character is also written to the output device.

Parameters

Stack before call

previous contents

wordspace Word-Space for result

echoFlag Word-Echo or don't echo character to output device (see Figure 23-1)

f-SP

Stack after call

previous contents

char Word-Character (in low-order byte)

f-SP

Errors Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

C e xtern pascal Word ReadCha r (echoFlag)

Word echoFlag ;

The echo-flag word
The values for echoFlag are illustrated in Figure 23-1.

I 1s 11411311211111019 I a I 1 I 6 I s I 4 I 3 I 2 I 1 I o I
l JJ Reserved; set to O J

echo
Echo characters to output device = 1

Don't echo characters = 0

Figure 23-1
Character echo-flag word

Text Tool Set routines 23-29

$240C Readline
Reads a character string from the input text device, combines it with the input global
masks, and writes the string to the memory location starting at bujferPtr. The
character string is terminated when one of the following conditions is met:

o An End-of-line (EOL) character is received.

o The count of characters received is equal to the maximum line length specified by
maxCount.

If echoFlag is set to a value of $0001, the characters are also written to the output
device. The echoFlag is illustrated in Figure 23-1 in the section "ReadChar" in this
chapter.

The count of characters received is returned on the stack.

Parameters

Stack before call

previous contents

wordspace

-- bufferPtr

maxCount

eolChar

echoFlag

Stack after call

previous contents

charCount

--·

Word-Space for result

Long-POINTER to start of buffer. where characters will be written

Word-Maximum line length

Word-End-of-line character in low byte

Word-Echo or don't echo characters to output device (see Figure 23-1)

f-SP

Word-Count of characters received

f-SP

Errors Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

23-30 Text Tool Set routines

C extern pasca l Word ReadLine(bufferPtr , maxCount , eolChar , echoFlag)

Pointer bufferPtr ;

Word maxCount ;

Word eolChar ;

Word echoFlag ;

Text Tool Set routines 23-31

$0BOC SetErrGlobals
Sets the global parameters for the error output device.

Parameters

Stack before call

previous contents

andMask

orMask

Word-Global AND mask for error output device Oow-order byte only)

Word-Global OR mask for error output device Oow-order byte only)

f- SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetErrGlobals(andMask , orMask)

Word andMask ;

Word orMask ;

You can also use the following alternate form of the call:

extern pascal void SetErrGlobals (mask)

TxtMaskRec ma s k;

23-32 Text Tool Set routines

$1 lOC

Parameters

SetErrorDevice
Sets the error output device to a specified type and location. The routine returns an
error if the deviceType specified is greater than 2.

Stack before call

previous contents

device Type Word-Error output device CO = BASIC, 1 = Pascal, 2 = RAM based)

Long-Slot number for BASIC or Pascal driver, or POINTER to jump
table for RAM-based driver

ptrOrSlot

f-SP

Stack after call

previous contents I
--------- f- SP

Errors $0C01 badDevType Illegal device type

C extern pascal void SetErrorDevice (deviceType ,ptrOrSlot)

Word deviceType ;

Longword ptr0rS1ot ;

You can also use the following alternate form of the call:

extern pascal void SetErrorDevice (deviceRec)

DeviceRec deviceRec ;

Text Tool Set routines 23-33

$090C SetlnGlobals
Sets the global parameters for the input device.

Parameters

Stack before call

previous contents

andMask

orMask

Word-Global AND mask for input device (low-order byte only)

Word-Global OR mask for input device (low-order byte only)

f- SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetinGlobals(and.Mask , orMask)

Word andMask;

Word orMask;

You can also use the following alternate form of the call:

e xtern pascal void SetinGlobals (mask)

TxtMaskRec mask ;

23-34 Text Tool Set routines

$0FOC

Parameters

SetlnputDevice
Sets the input device to a specified type and location. The routine returns an error if
the deviceType is greater than 2.

Stack before call

previous contents

device Type

ptrOrSlot

Word-Input device type (0 = BASIC, 1 = Pascal, 2 = RAM based)

Long-Slot number for BASIC or Pascal driver, or POINTER to jump
table for RAM-based driver

f-- SP

Stack after call

previous contents '
--------- f-- SP

Errors

C

$0C01 badDevType Illegal device type

e xtern pasca l void SetinputDevice (dev iceType , ptrOrSlot)

Word deviceType ;

Longword ptrOrSlot ;

You can also use the following alternate form of the call:

extern pascal void SetinputDevice (deviceRec)

DeviceRec deviceRec ;

Text Tool Set routines

(continued)

23-35

Assembly-language examples

BASIC example

PEA

PEA

PEA

0000

000

003

_SetinputDevice

RAM-based example

23-36

PEA

PEA

002

label/256

PEA label

_SetinputDevice

Text Tool Set routines

BASIC type

in slot 3

RAM-based type

RAM driver location

$0AOC SetOutGlobals
Sets the global parameters for the output device.

Parameters

Stack before call

prevtous contents

andMask Word-Global AND mask for output device Oow-order byte only)

Word-Global OR mask for output device Oow-order byte only)

~SP

orMask

Stack after call

prevtous contents I
--------~SP

Errors

C

None

extern pascal void SetOutGlobals(andMask ,orMask)

Word andMask;

Word orMask ;

You can also use the following alternate form of the call:

extern pascal void SetOutGlobals(mask)

TxtMaskRec mask;

Text Tool Set routines 23-37

$100C

Parameters

SetOutputDevice
Sets the output device to a specified type and location. The routine returns an error if
the deviceType specified is greater than 2.

Stack before call

previous contents

device Type

ptrOrSlot

Word-Output device type (0 = BASIC, 1 = Pascal, 2 = RAM based)

Long-Slot number for BASIC or Pascal driver, or POINTER to jump
table for RAM-based driver

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

23-38

$0C01 badDevType Illegal device type

extern pascal void Set0utputDevice (deviceType ,ptr0rS1ot)

Word deviceType;

Longword ptrOrSlot;

You can also use the following alternate form of the call:

extern pascal void SetOutputDevice(deviceRec)

DeviceRec deviceRec;

Text Tool Set routines

$170C StatusTextDev
Executes a status call to a specified text device. The routine returns an error if the
device is not ready.

Warning

BASIC devices do not support this routine.

Parameters

Staclc before call

previous contents

deviceNum

requestCode

Staclc after call

Word-Device for inquiry (0 = input, 1 = output, 2 = error output)

Word-Request code (in low-order byte) to pass to deviceNum

f-SP

previous contents I
-------- f- SP

Errors Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

C extern pascal void StatusTextDev(deviceNum,requestCode)

Word deviceNum ;

Word requestCode;

Text Tool Set routines 23-39

$230C

Parameters

TextReadBlock
Reads a block of characters from the input text device, combines them with the input
global masks, and writes the block to the memory location at bufferPtr + offset.

If echoFlag is set to a value of $0001, the characters are also written to the output
device. The echoFlag word is illustrated in Figure 23-1 in the section "ReadChar" in
this chapter.

Stack before call

previous contents

-- bufferPtr

offset

blockSize

echoFlag

- - · Long-POINTER to start of block

Word-Offset to start of block to be read

Word-Size of block to be read

Word-Echo or don't echo characters to output device (see Figure 23-1)

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

C extern pascal void Te xtReadBlock(bufferPtr , offset , blockSize , echoFlag)

Pointer bufferPt r;

Word offset ;

Wo rd blockSize ;

Word echoFlag ;

23-40 Text Tool Set routines

$1EOC

Parameters

TextWriteBlock
Combines a specified character string with the output global masks and then writes the
string to the output text device. The string is specified by the te:x:tPtr + offset
parameters, with the length specified by the count parameter.

Stack before call

previous contents

-- textPtr

offset

count

Stack after call

--· Long-POINTER to start of ASCII text

Word-Offset within ASCII text

Word-String length

~SP

previous contents I
--------~SP

Errors

C

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

e xtern pascal void Te xt WriteBlock(t extPt r,o ff set , count)

Pointer textPtr ;

Wo rd offset ;

Word count ;

Text Tool Set routines 23-41

$180C

Parameters

WriteChar
Combines a specified character with the output global AND mask and OR mask and
writes the character to the output text device.

Stack before call

previous contents

theChar

Stack after call

Word-Character to write (in low-order byte)

f-SP

previous contents I
-------- f- SP

Errors

C

23-42

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pa scal void WriteChar (t heCh a r)

Word t he Char;

Text Tool Set routines

$200C

Parameters

WriteCString
Combines a pointed-to C-type string (string terminates with $00) with the output
global masks and then writes the string to the output text device.

Stack before call

previous contents

cStrPtr

Stack after call

Long- POINTER to C-type string to be written

~SP

previous contents I
- -------~SP

Errors

C

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pascal void WriteCStr i ng(c St rP t r)

Pointer cStrPtr ;

Text Tool Set routines 23-43

$1AOC

Parameters

Writeline
Combines a pointed-to Pascal-type string (first byte of string specifies length) with the
output global masks and then writes the string to the output text device. For BASIC
and RAM-based drivers, the routine concatenates a carriage return to the string. For
Pascal drivers, the routine concatenates a carriage return and a line feed to the string.

Stack before call

previous contents

strPtr Long-POINTER to Pascal-type string to be written

f-SP

Stack after call

previous contents I
-------- f- SP

Errors Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

C extern pascal void WriteLine(strPtr)

Pointer strPtr;

23-44 Text Tool Set routines

$1COC

Parameters

WriteString
Combines a pointed-to Pascal-type string (first byte of string specifies length) with the
output global masks and then writes the string to the output text device.

Stack before call

previous contents

strPtr

Stack after call

Long-POINTER to Pascal-type string to be written

~SP

previous contents I
--------~SP

Errors

C

Pascal device errors Any of the errors $0C02-$0C40 as listed in the
section "Text Tool Set Summary" at the end of this
chapter

extern pascal void WriteString (strPtr)

Pointer strPtr ;

Text Tool Set routines 23-45

Text Tool Set summary
This section briefly summarizes the constants and tool set errors contained in the
Text Tool Set. There are no predefined data structures for the Text Tool Set.

Important

These definitions are provided in the appropriate interface file.

Table 23-4
Text Tool Set constants

Name Value Description

Echo flag values
noEcho $0000 Don't echo characters to output device
echo $0001 Echo characters to output device

Device numbers
input $0000 Input device
output $0001 Output device
errorOutput $0002 Error output device

Device types
basicType $0000 Basic device type
pascal Type $0001 Pascal device type
ramBased $0002 RAM-based device type

23-46 Chapter 23: Text Tool Set

Table 23-5
Text Tool Set error codes

Code Name Description

$0C01 badDevType Illegal device type
$0C02 badDevNum Illegal device number
$0C03 bad.Mode Illegal operation
$0C04 unDefHW Undefined hardware error
$0C05 lostDev Lost device: device no longer on-line
$0C06 lostFile File no longer in diskette directory
$0C07 badTitle Illegal filename
$0C08 noRoom Insufficient space on specified diskette
$0C09 noDevice Specified volume not on-line
$0COA noFile Specified file not in directory of specified volume
$0COB dupFile Duplicate file: attempt to rewrite a file when a file

of that name already exists
$0COC notClosed Attempt to open file that is already open
$0COD notOpen Attempt to access a closed file
$0COE badFormat Error in reading real or integer number
$0COF ringBuffOFlo Ring buffer overflow: characters arriving faster

than the input buffer can accept them
$0C10 writeProtected Specified diskette is write-protected
$0C40 devErr Device error: device failed to complete a read or

write correctly

Note: With the exception of badDevType , the errors should occur only for Pascal devices.

Text Tool Set summary 23-47

Chapter 24

Tool Locator

The Tool Locator is the tool set that allows your application to use tool sets without
knowing whether the tool sets are in RAM or ROM.

In this chapter, we provide the information you need to use the existing tool sets. If
you are writing your own tool set, however, you'll need to understand more about
how the Tool Locator works. We have provided most of that information in
Appendix A, "Writing Your Own Tool Set," as a special subject; please refer to that
appendix for more information.

A preview of the Tool Locator routines
To introduce you to the capabilities of the Tool Locator, all Tool Locator routines are
grouped by function and briefly described in Table 24-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the Tool Locator
routines (discussed in alphabetical order) .

24-1

Table 24-1
Tool Locator routines and their functions

Routine

Housekeeping routines
TLBootinit

TLStartUp
TLShutDown
TL Version
TLReset

TLStatus

Tool locating routines
Load Tools

LoadOneTool

UnloadOneTool
GetFuncPtr

GetTSPtr
SetTSPtr

GetWAP
SetWAP
TLMountVolume

TL TextMountVolume

SaveTextState

RestoreTextState

MessageCenter

Description

Initializes the Tool Locator and all other ROM-based tool sets-must not be
called by an application
Starts up the Tool Locator for use by an application
Shuts down the Tool Locator when an application quits
Returns the version number of the Tool Locator
Resets the Tool Locator and all other ROM-based tool sets when the system is
reset- must not be called by an application
Indicates whether the Tool Locator is active

Ensures that specified system tool sets are available and have specified
minimum version numbers
Ensures that a specified system tool set is available and has a specified
minimum version number
Unloads a specified tool set from memory
Returns an entry in the function pointer table for a specified function in a
specified tool set
Returns the pointer to the function pointer table of a specified tool set
Installs the pointer to a function pointer table in the appropriate tool pointer
table
Gets the pointer to the work area for a specified tool set
Sets the pointer to the work area for a specified tool set
Displays on the Super Hi-Res display a simulated dialog box that your
application can use to ask the user to mount a volume
Displays on the 40-column text screen a simulated dialog box that your
application can use to ask the user to mount a volume
Saves the state of the text screen and forces the hardware to display the text
screen regardless of the display mode in use
Restores the state of the text screen from a specified handle and disposes of
the handle
Allows applications to communicate with each other

24-2 Chapter 24: Tool Locator

Using the Tool Locator
This section discusses how some of the Tool Locator routines fit into the general flow
of an application and gives you an idea of which routines you'll need to use under
normal circumstances. Each routine is described in detail later in this chapter.

The Tool Locator does not depend on the presence of any of the other tool sets;
rather, all other tool sets depend on the Tool Locator.

The first Tool Locator call your application must make is TIStartUp. TIStartUp starts
the Tool Locator mechanism that allows the other tool sets to be found. Conversely,
when you quit your application, you must make the TLShutDown call just before the
application quits .

Your application ensures that the tool sets it needs are available-and that they meet
specified minimum version requirements-by making a LoadTools call. If, for
example, you wanted to use the LineEdit Tool Set routine LETextBox2, which is
available only in versions 2.0 and later of the tool set, you would specify 2.0 as the
minimum version for the LineEdit Tool Set in the LoadTools call. The LoadTools
routine loads all the tool sets that meet the minimum version requirements of those
specified in the routine, thus making them available for the life of the application.

RAM-based tool sets are loaded only when the application requests they be loaded.
Thus, if you want to load a tool set just before your application uses it, you can use the
LoadOneTool routine (this routine also checks for the minimum tool set version).
When you are finished with the tool set, you can unload it by using the
UnloadOneTool routine .

The routines TIMountVolume and TITextMountVolume can help if the boot disk
containing the specified tool set (in the TOOLS subdirectory of the SYSTEM
directory) is not available when the tool set is requested. TLMountVolume provides
a mechanism your application can use to display a prompting message and OK and
Cancel buttons on the Super Hi-Res display. TITextMountVolume performs the
same function (with a message only, no buttons) for the 40-column text display.

You can use the SaveTextState and RestoreTextState routines to save and restore the
state of the text screen. You can use the MessageCenter call to communicate with
other applications.

Normally, your application won't need to use the GetWap, SetWap, GerfSPtr,
SerfSPtr, and GetFuncPtr calls; those calls are used only when you are writing your
own tool set (see Appendix A, "Writing Your Own Tool Set," for more details).

Using the Tool Locator 24-3

$0101

Parameters

Errors

C

$0201

Parameters

Errors

C

TLBootlnit
Initializes the Tool Locator and all other ROM-based tool sets; called only by the
system startup firmware.

Warning

An application must never make this call .

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

TLStartUp
Starts up the Tool Locator for use by an application.

Important

Your application must make this call before it makes any other tool calls.

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pascal void TLSt a rtUp ()

24-4 Tool Locator housekeeping routines

$0301 TLShutDown
Shuts down the Tool Locator when an application quits.

Important

Your application must make this call just before It quits.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C e xtern pascal void TLShutDown ()

$0401 TLVersion
Returns the version number of the Tool Locator.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

f-SP

Word-Version number of Tool Locator

f-SP

C extern pascal Word TLVersion ()

Tool Locator housekeeping routines 24-5

$0501

Parameters

Errors

C

$0601

Parameters

TLReset
Resets the Tool Locator and all other ROM-based tool sets when the system is reset;
called only by the system firmware.

Warning
An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

TLStatus
Indicates whether the Tool Locator is active.

Stack before call

previous contents

wordspace

Stack after call

previous contents

activeFlag

Errors None

Word-Space for result

~SP

Word-BOOLEAN; TRUE (Tool Locator is always active)

~SP

C extern pascal Boolean TLStatus ()

24-6 Tool Locator housekeeping routines

$0801

Parameters

GetFuncPtr
Returns an entry in the function pointer table for a specified function in a specified
tool set.

•:• Note: The word containing JuncNum and tsNum is the same as the number the
Tool Locator normally uses to locate the routine. For example, the appropriate
number for GetFuncPtr is $0B01.

Stack before call

previous contents

-- longspace --·

userOrSystem

JuncNum I tsNum

Stack after call

previous contents

fptEntry

Errors $0001

$0002

Long-Space for result

Word-$0000 = system tool set; $8000 = user tool set

Byte-Function number I Byte-Tool set number

~SP

Long-Entry in function pointer table

~SP

t oolNotFoundErr Specified tool set not found

funcNotFoundErr Specified routine not found

C extern pascal Pointer GetFuncPtr (userOrSystem , funcTSNum)

Word userOrSystem ;

Word funcTSNum ;

Tool Locator routines 24-7

$0901

Parameters

GetTSPtr
Returns the pointer to the function pointer table of a specified tool set.

•!• Note: This call is normally used only if you are writing your own tool set. See
Appendix A, "Writing Your Own Tool Set," for more information.

Stack before call

previous contents

-- longspace

userOrSystem

tsNum

Stack after call

previous contents

fptPtr

- -

Errors $0001

Long-Space for result

Word-$0000 = system tool set; $8000 = user tool set

Word-Tool set number of tool set whose pointer is to be returned

f-SP

Long- POINTER to function pointer table of tool set

f-SP

toolNotFoundErr Specified tool set not found

C extern pascal Pointer GetTSPtr (userOrSy s tem, t s Num)

Word userOrSystem;

Word tsNum ;

24-8 Tool Locator routines

$0C01

Parameters

GetWAP
Gets the pointer to the work area for a specified tool set.

•!• Note. This call is normally used only if you are writing your own tool set. See
Appendix A, "Writing Your Own Tool Set," for more information.

Stack before call

previous contents

-- longs pace

userOrSystem

tsNum

--· Long-Space for result

Word-$0000 = system tool set; $8000 = user tool set

Word-Number of tool set

~SP

Stack after call

previous contents

waptPtr

Errors

C

$0001

Long-POINTER to work area of tool set

~SP

toolNotFoundErr Specified tool set not found

extern pascal Pointer GetWAP(userOrS ystem, tsNum)

Word userOrSystem ;

Word tsNum ;

Tool Locator routines 24-9

$0F01

Parameters

LoadOneTool
Ensures that a specified system tool set is available (loading it from disk if necessary)
and has at least a specified minimum version number. If the minimum version of the
tool is not available in the TOOLS subdirectory of the SYSTEM directory in the boot
volume, an error occurs.

•!• Note: See the section "LoadTools" in this chapter for a list of tool set numbers.

Stack before call

previous contents

too/Number

min Version

Word-INTEGER; tool set number of tool set to load

Word-Minimum version number of tool set needed

~SP

Stack after call

previous contents I
--------~SP

Errors

C

24-1 0

$0001

$0010

toolNotFoundErr Specified tool set not found

tool VersionErr Specified minimum version not found

System Loader errors

ProDOS errors

Returned unchanged

Returned unchanged

e xtern pasc a l v oid LoadOn e Tool (toolNumber , mi nVersion)

Wo r d too lNumber;

Word mi nVe rsion;

Tool Locator routines

$0E01

Parameters

LoadTools
Ensures that specified system tool sets are available and checks that the tool sets have
at least a specified minimum version number. The call needs, as input, a pointer
to a tool table. The tool table lists the total number of tool sets, the number of each
tool set needed, and the minimum acceptable version number of each tool set.

The structure of the tool table is illustrated in Figure 24-1. The numbers of the tool sets
are given in Table 24-2.

Important
RAM-based tools are loaded from the TOOLS subdirectory of the SYSTEM
directory. Each tool set is a load file of type SBA and Is named after its decimal
tool set number (Tool 23 is in a file named TOOL023, and so on) .

Stack before call

previous contents

toolTablePtr Long-POINTER to table of tool set numbers

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

$0001

$0010

too lNotFoundErr Specified tool set not found

toolVersionErr Specified minimum version not found

System Loader errors

ProDOS errors

Returned unchanged

Returned unchanged

extern pascal void LoadTool s(toolTabl e Ptr)

Pointer toolTablePtr ;

(continued)

Tool Locator routines 24-11

Tool table

The form the tool table must take is shown in Figure 24-1.

Tool
set
number

Figure 24-1
Tool table

Count

$01

$02

$03

n

Version $0103

Version $0201

Version $0100

n

Minimum
version
of tool set

Thus, in assembly language the table looks like this:

de i ' NumToolsRequired '

de i ' ToolNuml ,MinVersion '

de i ' ToolNu m2 , MinVersion '

de i ' ToolNumN, MinVersion '

The format of the min Version word is as follows:

High-order byte = Major version
Low-order byte = Minor version

Thus, a value of $0201 means a major version of 2 and a minor version of 1, and is
commonly referred to as "Version 2.1."

24-12 Tool Locator routines

Tool set numbers

The tool set numbers of all of the tool sets are listed in Table 24-2.

Table 24-2
Tool set numbers

Tool set Tool set

number name

$01 #01 Tool Locator
$02 #02 Memory Manager
$03 #03 Miscellaneous Tool Set
$04 #04 QuickDraw II
$05 #05 Desk Manager
$06 #06 Event Manager
$07 #07 Scheduler
$08 #08 Sound Tool Set
$09 #09 Apple Desktop Bus Tool Set
$0A #10 SANE Tool Set
$OB #ll Integer Math Tool Set
$0C #12 Text Tool Set
$OD #13 Reserved for internal use
$OE #14 Window Manager
$OF #15 Menu Manager
$10 #16 Control Manager
$11 #17 System Loader
$12 #18 QuickDraw II Auxiliary
$13 #19 Print Manager
$14 #20 LineEdit Tool Set
$15 #21 Dialog Manager
$16 #22 Scrap Manager
$17 #23 Standard File Operations Tool Set
$18 #24 Not available
$19 #25 Note Synthesizer
$1A #26 Note Sequencer
$1B #27 Font Manager
$ lC #28 List Manager

Tool Locator routines 24-13

$1501

Parameters

MessageCenter
Allows applications to communicate with each other.

Important

This routine is available only in Version 2.1 or later of the Tool Locator.

The message types are administered by Developer Technical Support at Apple
Computer.

Stack before call

previous contents

action

type

Word-1 = add, 2 = get, 3 = delete (see Table 24-3)

Word-Message ID number

-- messageH and le --· Long-HANDLE to message

~SP

Stack after call

previous contents I
------- -~SP

Errors $0111 messNotFoundErr Specified message not found

C e xtern pa s cal void Mess a geCenter (action , type , messageHandle)

Word action ;

Word type ;

Handle messageHandle ;

24-14 Tool Locator routines

More about messages
The action codes the routine will recognize are shown in Table 24-3.

Table 24-3
MessageCenter oction codes

Type Name

1 add.Message

2 getMessage

Description

Adds the specified message to the message center data.
The type is the ID of the message being added; any
message already in the message center with this type is
deleted. This message does not alter the
messageHandle.

Returns the specified message from the message center.
If there is no message with the specified ID, an error
occurs and the messageHandle is not altered. The
messageHandle block can be of any size; the routine will
resize the block to fit the data being returned.

3 deleteMessage Deletes a specified message from the message center. If
the message does not appear in the message center, an
error occurs. The messageHandle is not used for this
call, and any value may be passed.

The actual data in the message must begin with six bytes of reserved space, as follows:

MessNext
MessType
MessData

LONG
WORD
block

Handle of next message
Type of this message
Message-specific data

The only message defined at the time of publication is type 1. That message type is
used to pass file information from one application to another. For example, a
Finder-type application needs to tell other applications what documents it should
open or print. In this case, the message data is set up as follows:

MessNext
MessType
MessData

LONG
WORD
block

str 'namel'

1; file info type
0 = open the following files
1 = print the following files

str 'full pathname 2'

BYTE 0

Tool Locator routines 24-15

$1401

Parameters

RestoreTextState
Restores the state of the text screen from a specified handle and disposes of the
handle. The state of the text screen can be saved with a SaveTextState call; see the
section "SaveTextState" in this chapter.

Stack before call

previous contents

stateHandle Long- HANDLE to state record to restore

f-SP

Stack after call

previous contents I
- - ------ f- SP

Errors None

C extern pascal void RestoreTe xtSt a te (stateHa ndle)

Handle stateHa nd le ;

24-16 Tool Locator routines

$1301

Parameters

SaveTextState
Saves the state of the text screen and forces the hardware to display the text screen
regardless of the display mode in use. The routine does not initialize the Text Tool
Set.

Important

This routine Is available only In Version 2.1 or later of the Tool Locator.

Stack before call

previous contents

longspace

Stack after call

previous contents

stateHandle

Errors None

Long-Space for result

f-SP

Long-HANDLE to state record (see Table 24-4)

f-SP

C e xtern pascal Ha ndle SaveTextState()

(continued)

Tool Locator routines 24-17

The SaveTextState record

The structure of the record in which the SaveTextState information is saved is private.
At the time of publication, the various entities saved included those shown in
Table 24-4.

Table 24-4
State record

Entity

StateReg
80Col
NewVideo
Text
Mix
Page2
HiRes
AltCharSet
80Vid
Cursor
c3ROM
OutputDevice
OutGlobals
InputDevice
InGlobals
Screen Memory
in bank $0
Screen Memory
in bank $1
Screen Memory
in bank $EO
Screen Memory
in bank $El
Screen holes for
Slot 3

Description

Language card information
40 or 80 columns
New video register
Text state soft switch
Split mode soft switch
Page 1 or page 2
HiRes or LoRes
Character set
State of 80 store
Internal cursor variable
State of the slot 3 firmware
Text tools output device
Text tools output globals
Text tools input device
Text tools input globals

24-18 Tool Locator routines

$0A01

Parameters

SetTSPtr
Installs the pointer to a function pointer table in the appropriate tool pointer table
(TPT).

•:• Note: This call is normally used only if you are writing your own tool set. See
Appendix A, "Writing Your Own Tool Set," for more information.

If the TPT is not yet in RAM, the routine copies it to RA1v1. (Memory for the TPT is
obtained from the Memory Manager.) If there is not enough room in the TPT for the
new entry, the TPT is moved to a bigger chunk of memory. Likewise, the Work Area
Pointer Table (WAPD is expanded, if necessary (memory for the expansions is
obtained from the Memory Manager).

If the new pointer table has any O entries, old entries are moved from the old pointer
table to the new pointer table. This feature makes it possible, for example, to patch
just a portion of a tool set rather than replacing the tool set entirely.

Stack before call

previous contents

userOrSystem Word-$0000 = system tool set, $8000 = user tool set

Word-Tool set number of tool set tsNum

-- fptPtr

Stack after call

--· Long-POINTER to function pointer table for tool set

f-SP

previous contents I
------ --- f- SP

Errors $0001 toolNotFoundErr Specified tool set not found

C e xtern p ascal void SetTSPtr (userOr System , tsNum , fptPtr)

Word userOrSystem;

Word tsNum ;

Pointer fptPtr ;

Tool Locator routines 24-19

$0D01

Parameters

SetWAP
Sets the pointer to the work area for a specified tool set.

•!• Note: This call is normally used only if you are writing your own tool set. See
Appendix A, "Writing Your Own Tool Set, " for more information.

Stack before call

previous contents

userOrSystem

tsNum

-- waptPtr --·

Word-$0000 = system tool set; $8000 = user tool set

Word-Tool set number of tool set

Long-POINTER to work area of tool set

Stack after call

previous contents I
--------f-SP

Errors $0001 toolNotFoundErr Specified tool set not found

C e xtern pascal void Se t WA P (u serOr Sy stem , tsNum , waptPtr)

Word userOrSys t em ;

Word tsNu m;

Pointe r waptPtr ;

24-20 Tool Locator routines

$1101

Parameters

TLMountVolume
Displays on the Super Hi-Res display a simulated dialog box that your application can
use to ask the user to mount a volume. The routine also displays two buttons.

•:• Note: The box is not really a dialog box because it is not under the control of the
Dialog Manager (a RAM-based tool set that might not be active).

The text displayed must be supplied by the application (and can therefore be easily
translated into other languages). The contents of the screen under the box are saved
before the box is drawn and are restored after the user responds. The button may be
chosen by the user either by clicking on it with the mouse button or by pressing the
Return key for button 1 or the Esc (escape) key for button 2.

Important

Your application must make sure that the text passed in the strings fits in the
area provided.

Stack before call

previous contents

wordspace

whereX

whereY

-- linelPtr

-- line2Ptr

-- butlPtr

-- but2Ptr

--·

--·

--·

--·

Word-Space for result

Word- INTEGER; upper left X coordinate for box

Word- INTEGER; upper left Y coordinate for box

Long-POINTER to Pascal-type string to appear at top of box

Long-POINTER to Pascal-type string to appear just below line 2

Long-POINTER to Pascal-type string to appear inside button 1

Long-POINTER to Pascal-type string to appear inside button 2

f-SP

Tool Locator routines 24-21

Stack after call

previous contents

whichButton Word-Button number chosen; Return= 1, Esc = 2

~SP

Errors None

C

24-22

extern pascal Word TLMountVolume(whereX , whereY , line1Ptr , line2Ptr ,

but1Ptr , but2Ptr)

Integer where X;

Integer whereY ;

Pointer linelPtr ;

Pointer line2Ptr ;

Pointer butlPtr;

Pointer but2Ptr ;

You can also use the following alternate form of the call:

extern pascal Word TLMountVolume (where , line1Ptr , line2Ptr , but1Ptr , but2Ptr)

Point where ;

Pointer linelPtr ;

Pointer line2Ptr;

Pointer butlPtr ;

Pointer but2Ptr ;

Tool Locator routines

$1201 TLTextMountVolume
Displays on the 40-column text screen a simulated dialog box that your application
can use to ask the user to mount a volume. The routine also displays two buttons.

•!• Note: The box is not really a dialog box because it is not under the control of the
Dialog Manager (a RAM-based tool set that might not be active).

The text displayed must be supplied by the application (and can therefore be easily
translated into other languages). The contents of the screen under the box are saved
before the box is drawn and restored after the user responds. The button is chosen by
the user pressing the Return key for button 1 or the Esc (escape) key for button 2.

Important

Your application must make sure that the text passed in the strings fits in the
area provided.

Parameters

Stack before call

previous contents

wordspace

-- linelPtr

-- line2Ptr

-- buttonlPtr

-- button2Ptr

Stack after call

previous contents

whichButton

--·

--·

--·

--·

Word-Space for result

Long-POINTER to Pascal-type string to appear at top of box

Long-POINTER to Pascal-type string to appear just below line 2

Long-POINTER to Pascal-type string to appear inside button 1

Long-POINTER to Pascal-type string to appear inside button 2

~SP

Word-Button number chosen; Return = 1, Esc = 2

~SP

Tool Locator routines 24-23

Errors

C

24-24

None

extern pascal Word TLTextMountVolume(linelPtr , line2Pt r , butlPtr , but2Ptr)

Pointer

Pointer

Pointer

Pointer

linelPtr ;

line2Ptr ;

butlPtr ;

but2Ptr ;

Tool Locator routines

$1001

Parameters

UnloadOneTool
Unloads a specified tool set from memory. See Table 24-2 in the section "LoadTools"
in this chapter for the tool set numbers.

The tool set is left in a restartable state; that is, the purge level of all of the tool set's
memory blocks is set to 3 so that the tool set may be restarted quickly. See Chapter 12,
"Memory Manager," in Volume 1 for more information on purge levels.

Stack before call

previous contents

too/Number Word-INTEGER; tool set number of tool set to unload

~SP

Stack after call

previous contents I
--------~SP

Errors $0001 toolNotFoundErr Specified tool set not found

C extern pascal void UnloadOneTool (toolNumber)

Word toolNumber ;

Tool Locator routines 24-25

Tool Locator summary
This section briefly summarizes the constants and tool set error codes contained in
the Tool Locator. There are no predefined data structures for the Tool Locator.

Important

These definitions are provided In the appropriate Interface file.

Table 24-5
Tool Locator constants

Name Value

Message center action codes
add.Message $0001
getMessage $0002
deleteMessage $0003

Message center type values
fileinfoType $0001

TLMountVolume button values
mvReturn $0001
mvEscape $0002

Tool set specification
sysTool
userTool

$0000
$8000

Table 24-6
Tool Locator error codes

Code

$0001
$0002
$0110
$0111

Name

toolNotFoundErr
funcNotFoundErr
toolVersionErr
messNotFoundErr

Description

Add message
Get message
Delete message

Equivalent of dialog OK button
Equivalent of dialog Cancel button

System tool set
User tool set

Description

Specified tool set not found
Specified routine not found
Specified minimum version not found
Specified message not found

24-26 Chapter 24: Tool Locator

Chapter 25

Window Manager

The Window Manager is a tool set for dealing with windows on the Apple IIGS
screen. The screen represents a working surface or desktop; graphic objects appear
on the desktop and can be manipulated with a mouse. A window is an object on the
desktop in which information, such as a document or a picture, is presented.
Windows can be any size or shape, and there can be one or many of them,
depending on the application.

Windows allow the application to control more information than the screen can
display at one time. The name window is used because the user sees through the
window into a larger area, as illustrated in Figure 25-1.

Figure 25-1
Window

25- 1

A preview of the Window Manager routines
To introduce you to the capabilities of the Window Manager, all Window Manager
routines are grouped by function and briefly described in Table 25-1. These routines
are described in detail later in this chapter, where they are separated into
housekeeping routines (discussed in routine number order) and the rest of the
Window Manager routines (discussed in alphabetical order).

Table 25-1
Window Manager routines and their functions

Routine

Housekeeping routines
WindBootinit

WindStartUp
WindShutDown
WindVersion
WindReset

WindStatus

Description

Initializes the Window Manager; called only by the the Tool Locator-must not
be called by an application
Starts up the Window Manager for use by an application
Shuts down the Window Manager when an application quits
Returns the version number of the Window Manager
Resets the Window Manager; called only when the system is reset-must not be
called by an application
Indicates whether the Window Manager is active

Initialization and termination routines
Desktop Controls the addition of regions to and subtraction of regions from the desktop

and controls the current desktop pattern
NewWindow Creates a specified window as specified by its parameters, adds it to the window

list, and returns a pointer to the new window's GrafFort
CloseWindow Removes a specified window from the screen, disposes of all controls associated

with that window, and deletes the window from the window list
WindNewRes Closes the Window Manager's Graf'Port and opens a new Graf'Port in the other

Super Hi-Res resolution

Window record and global access routines
GetWMgrPort Returns a pointer to the Window Manager's port
SetWindowicons Sets the icon font for the Window Manager
SetWRefCon Sets ;:;. value that is inside a specified window record and is reserved for the

GetWRefCon

SetWTitle
GetWTitle
SetFrameColor
GetFrameColor
FrontWindow

application's use
Returns a value from a a specified window's record that was passed to either
NewWindow or SetWRefCon by the application
Changes the title of a specified window to a specified title and redraws the window
Returns the pointer to a specified window's title
Sets the color of a specified window's frame
Returns the color of a specified window's frame
Returns a pointer to the first visible window in the window list (that is, the active
window)

25-2 Chapter 25: Window Manager

Table 25-1 (continued)
Window Manager routines and their functions

Ro utine Description

Window record and global access routines
GetFirstWindow Returns a pointer to the first window in the window list (the window may not be the

GetNextWindow

GetWKind

SetWFrame
GetWFrame
GetStructRgn
GetContentRgn
GetUpdateRgn
GetDefFroc

SetDefFroc

GetWControls
SetZoomRect

GetZoomRect

GetSysWFlag
SetSysWindow
GetContentOrigin

SetContentOrigin
SetContentOrigin2

SetOriginMask
StartDrawing
GetDataSize
SetDataSize
GetMaxGrow

SetMaxGrow
GetScroll

Se tScroll

active window)
Returns a pointer to the next window in the window list after a specified window;
returns NIL if the specified window is the last window in the window list
Indicates whether a specified window is a system window or an application
window
Sets the bit flag that describes a specified window's frame type
Returns the bit flag that describes a specified window's frame type
Returns a handle to a specified window's structure region
Returns a handle to a specified window's content region
Returns a handle to a specified window's update region
Returns a pointer to the routine that is called to draw, hit test, and otherwise
define a window's frame and behavior
Sets the pointer to the routine that is called to draw, hit test, and otherwise define
a window's frame and behavior
Returns the handle to the first control in the window's control list
Sets the rectangle to be used as the content's zoomed or unzoomed size for a
specified window
Returns a pointer to the rectangle to be used as the content's zoomed or
unzoomed size for a specified window
Indicates whether a specified window is a system or an application window
Marks a specified window as a system window
Returns the values used by TaskMaster to set the origin of the window's GrafFort
when handling an update event
Sets the origin of the window's GrafFort when handling an update event
Sets the origin of the window's GrafPort when handling an update event and
allows the application to scroll or not scroll the window's content region
Specifies the mask used to put the horizontal origin on a grid
Makes a specified window the current port and sets its origin
Returns the height and width of the data area of a specified window
Sets the height and width of the data area of a specifed window
Returns the maximum values to which a specified window's content region can
grow
Sets the maximum values to which a specified window's content region can grow
Returns the number of pixels by which TaskMaster will scroll the content region
when the user selects the arrows on window frame scroll bars
Sets the number of pixels by which TaskMaster will scroll the content region when
the user selects the arrows on window frame scroll bars

(continu ed)

A preview of the Window Manager routines 25-3

Table 25-1 (continued)
Window Manager routines and their functions

Routine Description

Window record and global access routines
GetPage Returns the number of pixels by which TaskMaster will scroll the content region

when the user selects the page regions on window frame scroll bars
SetPage Sets the number of pixels by which TaskMaster will scroll the content region when

the user selects the page regions on window frame scroll bars
GetContentDraw Returns the pointer to the routine that draws the content region of a specified

window
SetContentDraw Sets the pointer to the routine to draw the content region of a specified window

Information bar routines
GetinfoDraw Returns the pointer to the routine that draws the information bar for a specified

window
SetinfoDraw Sets the pointer to the routine that draws the information bar for a specified

window
GetinfoRefCon

SetinfoRefCon

GetRectinfo

StartinfoDrawing

EndinfoD ra wing

Returns the value associated with the draw information bar routine for a specified
window
Sets the value associated with the draw information bar routine for a specified
window
Sets the information rectangle to the coordinates of the information bar
rectangle
Allows an application to draw or hit test outside of its information bar definition
procedure
Puts the Window Manager back into a global coordinate system

Window shuffling
SelectWindow
Hide Window
Show Window
ShowHide
BringToFront

routines

SendBehind

Makes a specified window the active window
Makes a specified window invisible
Makes a specified window visible if it was invisible and then draws the window
Shows or hides a window
Brings a specified window to the front of all other windows and redraws the
windows as necessary but does not do any highlighting or unhighlighting
Changes the position of a specified window, redrawing any exposed windows

Window drawing routines
HiliteWindow Highlights or unhighlights a specified window
RefreshDesktop Redraws the entire desktop and all the windows

25-4 Chapter 25: Window Manager

Table 25-1 (continued)
Window Manager routines and their functions

Routine Description

User interaction routines
FindWindow Indicates which part of which window, if any, the cursor was in when the user pressed

the mouse button
Drag Window Pulls around a dotted outline of a specified window, following the movements of the

mouse until the mouse button is released
GrowWindow Pulls around a grow image of a specified window, following the movements of the

mouse until the mouse button is released
TrackGoAway Tracks the mouse until the mouse button is released, highlighting the go-away region

as long as the mouse location remains inside it and unhighlighting it when the mouse
moves outside it

TrackZoom Tracks the mouse until the mouse button is released, highlighting the zoom region as
long as the mouse location remains inside it and unhighlighting it when the mouse
moves outside it

TaskMaster Calls GetNextEvent and looks in the event part of the task record to see if it can
handle the event

Window sizing and positioning routines
Move Window Moves a specified window to another part of the screen without affecting its size
SizeWindow Enlarges or shrinks the port rectangle of a specified window's GrafPort to a specified

width and height
Zoom Window Switches the size and position of a specified window between its current size and

position and its maximum size
WindDragRect Pulls a dotted outline of a specified rectangle around the screen, following the

movements of the mouse until the mouse button is released
Update region routines
InvalRect Accumulates a specified rectangle into the update region of the window whose

GrafFort is the current port
Inva!Rgn Accumulates a specified region into the update region of the window whose GrafPort

is the current port
ValidRect Removes a specified rectangle from the update region of the window whose GrafPort

is the current port and tells the Window Manager to cancel any updates accumulated
for that rectangle

ValidRgn Removes a specified region from the update region of the window whose GrafPort is
the current port and tells the Window Manager to cancel any updates accumulated
for that region

Begin Update Replaces the visible region of the window's GrafPort with the intersection of the
visible region and the update region and then sets the window's update region to an
empty region

EndUpdate Restores the normal visible region of a specified window's GrafPort that was changed
by a BeginUpdate call

Miscellaneous routines
PinRect Pins a specified point inside a specified rectangle
CheckUpdate Looks from top to bottom in the window list for a visible window that needs updating

(that is, for a window whose update region is not empty)

A preview of the Window Manager routines 25-5

Window frames and controls
There are two kinds of predefined window frames, document and alert. The alert
window is used by the Dialog Manager and is explained in Chapter 6, "Dialog
Manager," in Volume 1. The document window, which is used by the Window
Manager, is explained in this section. The two types of window frames are illustrated
in Figure 25-2.

Document window frame

Figure 25-2
Window frames

Alert window frame

A document window may have any or all of the standard window controls, as
listed below. The only restriction is that if there is a close or zoom box there must
also be a title bar, and common sense would dictate that there only be a zoom box if
there is a size box, although this is not a requirement. The standard controls include
the following:

• Title bar, a rectangle at the top of the window that contains the window's title,
may hold the close and zoom boxes, and can be a drag region for moving the
window

• Close box, a small region in the title bar that the user can select to remove the
window from the screen

• Zoom box, a small region in the title bar that the user can select to make the
window its maximum size and to return it to its previous size and position

• Right scroll bar, which the user selects to scroll vertically through the data in the
window

• Bottom scroll bar, which the user selects to scroll horizontally through the data
in the window

• Size box, a small region in the lower right corner of the window; the user can drag
the size box to change the size of the window

• Information bar, a place in which an application can display some information
that won't be affected by the scroll bars

25-6 Chapter 25: Window Manager

These standard controls, which can be used only for document windows and may not
be added to alert windows, are illustrated in Figure 25-3.

Close box

Information bar

Figure 25-3
Standard window controls

Title bar

Window -- +~-- Zoom box
--

Right scroll bar

Bottom scroll bar

Some possible document window combinations are illustrated in Figure 25-4.

§0~Title ~Ql§
0

§0 Title QJ~
0 ->--

-
-0 -0

¢ ¢1 I I 1¢ ~

Figure 25-4
Sample document windows

Title

Window frames and controls 25-7

You can either use the standard window types or create your own window types (see
the section "Defining Your Own Windows" in this chapter). Some windows-such as
the window the Dialog Manager creates to display an alert-may be created
indirectly for you when you use other parts of the Toolbox. Windows created either
directly or indirectly by an application are collectively called application windows.
Another class of windows, called system windows, consists of windows in which
desk accessories are displayed.

The Window Manager's main function is to keep track of overlapping windows. You
can draw in any window without running over onto windows in front of it. You can
move windows to different places on the screen, change their planes (front-to-back
order), or change their sizes-all without concern for how the various windows
overlap. The Window Manager keeps track of any newly exposed areas and provides
a convenient mechanism with which you can ensure that they are properly redrawn.

You can also easily set up your application so that mouse actions cause the following
standard responses inside a document window (or similar responses inside other
windows):

• Clicking anywhere in an inactive window makes it the active window by bringing it
to the front and highlighting it.

• Clicking inside the close box of the active window closes the window. Depending
on the application, this may mean that the window disappears altogether or that a
representation of the window (such as an icon) is left on the desktop.

• Dragging anywhere inside the title bar of a window (except in a close or zoom box)
pulls an outline of the window across the screen; releasing the mouse button
moves the window to the new location. If the window isn't the active window, it
becomes the active window unless the Apple key was also held down. A window
can never be moved completely off the screen; by convention, it can't be moved
such that the visible area of the title bar is less than four pixels square.

• Dragging inside the size box of the active window changes the size of the window.

25-8 Chapter 25: Window Manager

Window regions
Every window has a content region-the area in which your application draws­
and a frame region-the outline of the entire window plus any standard window
controls. Together, the content and frame regions make up the structure region.

The content region is bounded by the rectangle you specify when you create the
window (that is, the rectangle specified in the portRect field of the window's
GrafPort). This region is where your application presents information to the user.

A window may also have any of the following regions within the window frame:

• Go-away region, a close box in the active window. Clicking in this region closes
the window.

• Drag region, the title bar. Dragging in this region pulls an outline of the window
across the screen, moves the window to a new location, and makes it the active
window (unless it was already the active window or unless the Apple key was held
down).

• Grow region, the size box. Dragging in this region pulls the lower right corner of
an outline of the window across the screen with the window's origin fixed, resizes
the window, and makes it the active window (unless it was already the active window
or unless the Apple key was held down).

• Zoom region, the zoom box in the active window. Clicking in this region toggles
from the current position and size to a maximum size and back again.

Clicking in any region of an inactive window makes it the active window.

Data and content areas and scroll bars
Windows act like a microfiche machine. What is seen in the window's content region
is like what is seen on the viewer. Similarly, the window's data area is what the
microfiche is to the viewer. Through the content region, the user can see part of the
data area unless the content region is large enough to view the entire data area.

Scroll bars are the devices used for scrolling the data area through the content region
and showing the relationship between the data area and content region. Because
scroll bars are handled by the Control Manager, the Control Manager must be
loaded and started up before scroll bars can be used in windows. The following
paragraphs explain how standard window scroll bars act in relationship to windows.

The scroll bar is like a reduced cross section of the work area. The scroll thumb has
the same ratio to the page region as the content region has to the data area, as
illustrated in Figure 25-5.

Data and content areas and scroll bars 25-9

Data area

Content region
(Data in view)

Figure 25-5
Proportional scroll bars

The size ~nd zoom boxes are used to increase or decrease the amount of the data area
displayed at one time. When the window is moved, the data area is moved with it so
the view in the content region remains the same.

Using the Window Manager
This section discusses how the Window Manager routines fit into the general flow of
an application and gives you an idea of which routines you'll need to use under
normal circumstances. Each routine is described in detail later in this chapter.

The Window Manager depends on the presence of the tool sets shown in Table 25-2
and requires that at least the indicated version of each tool set be present.

Table 25-2
Window Manager-other tool sets required

Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator 1.2
$02 #02 Memory Manager 1.2
$03 #03 Miscellaneous Tool Set 1.2
$04 #04 QuickDraw II 1.2
$06 #06 Event Manager 1.0

25- 10 Chapter 25: Window Manager

The first Window Manager call that your application must make is WindStartUp.
Conversely, when you quit your application, you must make the WindShutDown call.

Where appropriate in your program, use NewWindow to create any windows you
need .

There are two ways to handle user input in relation to windows. You can poll the user
via TaskMaster, which will handle most events that deal with standard user interfaces
(see the section "Using TaskMaster" in this chapter).

If you are not using TaskMaster, you must poll for events by calling GetNextEvent in
the Event Manager. Whenever your application receives an update event, the
application should respond as follows :

1 . Call the BeginUpdate routine. This routine temporarily replaces the visible
region of the window's GrafPort with the intersection of the visible region and the
update region. It then clears the update region for that window.

2. Draw the window contents.

3 . Call the EndUpdate routine to restore the actual visible region.

Activate events for dialog and alert windows are handled by the Dialog Manager. In
response to activate or inactivate events for windows created directly by your
application, you might take actions such as the following:

• Inactivate controls in inactive window and activate controls in active windows.

• Remove the highlighting or blinking cursor from text being edited when the
window becomes inactive and restore it when the window becomes active.

• Enable or disable a menu or certain menu items appropriately to match what the
user can do when windows become active or inactive.

If you are not using TaskMaster and a mouse-down event occurs, the application
should call FindWindow to see if the button was pressed inside a window. The
following are results from FindWindow and the standard actions to take:

• wlnMenuBar: Mouse-down somewhere outside the desktop. If you have not
subtracted any area from the desktop, there is a good chance the button was
pressed in the system menu bar. Call the Menu Manager routine MenuSelect.

• wlnDrag: Mouse-down in a window's drag region; it may or may not be the active
window. Call DragWindow.

• wlnContent: Mouse-down in window's content region. Call SelectWindow if the
window is not the active window. Otherwise, handle the event according to your
application.

• wlnGoAway: Mouse-down in active window's go-away region. Call
TrackGoAway. If the routine returns TRUE, you may want to give the user the
opportunity to save the window; then call CloseWindow or HideWindow.

• wlnZoom: Mouse-down in active window's zoom region. Call TrackZoom. If
TrackZoom returns TRUE, call ZoomWindow.

• wlnGrow: Mouse-down in active window's grow region. Call GrowWindow.

Using the Window Manager 25-11

Using TaskMaster
TaskMaster is a procedure that can handle many standard functions. When
TaskMaster is called instead of GetNextEvent; the sequence of events is as follows:

1 . TaskMaster calls GetNextEvent.

2. If there isn't an event ready, TaskMaster returns 0.

If an event is ready, TaskMaster looks at it and tries to handle it.

3 . If Taskmaster can't handle the event that is ready, it returns the event code to the
application. The application can handle the event as if it had come from
GetNextEvent.

If TaskMaster can handle the event, it calls standard routines to try to complete the
task. For example, if the user presses the mouse button in an active window's zoom
region, TaskMaster detects it, calls TrackZoom, calls ZoomWindow (if the user
actually selects the zoom region), and returns no event.

Sometimes TaskMaster can handle an event only up to a point. If the user presses the
mouse in the active window's content region, TaskMaster detects it but won't be able
to go any further, so it returns winContent, which tells the application the mouse
button is down in the active window's content region.

We provide TaskMaster for two reasons. First, it should help you get an application
running as quickly as possible and still allow you to take advantage of the standard
user interface. TaskMaster should be usable by even the most advanced
applications, although some alternate algorithms may have to be used to get the
desired results.

Second, TaskMaster provides upward compatiblity in the years to come. If an
application is using TaskMaster, a modification to TaskMaster to take advantage of
some new feature will not adversely affect the application; in fact, your application
may be using the new feature without any modification on your part!

When calling TaskMaster, you pass a pointer to a TaskMaster record, TaskRec. The
beginning of the record is the same as an event record. When TaskMaster calls
GetNextEvent, it passes the provided pointer so that the event record part of TaskRec
is set by GetNextEvent. The structure of the task record is shown in Figure 25-6.

25-12 Chapter 25: Window Manager

Offset

$0

2
3
4

5
6
7
8

9
DA
OB
DC

OD
OE
0 F

10
11
12

13
14
15
16

17

Field
~-----

wmWhat

wmMessage

1--------j

wmWhen

1--------j

wmWhere

I-------<

wmModifiers

1--------1

wmTaskData

1-------l

wmTaskMask

Figure 25-6

Word-From event record, unchanged from GetNextEvent

Long- From event record, unc hanged from GetNextEvent

Long- From event record, unchanged from GetNextEvent

Long-From event record, unchanged from GetNextEvent

Word-From event record , unchanged from GetNextEvent

Long-Extended portion for TaskMaster

Long-Mask that te lls TaskMaster which functions to ignore (see Figure 25-7)

TaskMaster's TaskRec (task record)

The wmtaskMask is used by your application to tell TaskMaster about functions you
would like it to ignore. The wmtaskMask is defined as shown in Figure 25-7.

Using TaskMaster 25- 13

Reserved at the time of publication; set to O ! 31!30!2912al2712612sl 241 231 221211201 1911 al 11l 16!

l1s l1 4l13 l12 l111 1019 I a I 7 I 6 Is I 4 I 3 I 2 I 1 Io I
tmlnfo J J

Don't activate inactive window on click in info bar= 1
Activate inactive window on click in info bar = 0

tmlnactive
Return wi nactMenu when user selects inactive menu item= l

Never return wi nactMen u = 0

tmCRedraw -
Redraw controls upon activate event = l

Don't redraw controls upon activate event = 0

tmSpecia/ -
Handle special menu items = l

Don't handle special menu items= 0

tmScro// -
Enable scrolling and activate inactive window on click in scroll bar = l

Disable scrolling and don't activate window on click in scroll bar= 0

tmGrow -
GrowWindow called = l

GrowWindow not ca lled = 0

tmZoom -
TrackZoom called = l

TrackZoom not called= O

tmClose -
TrackGoAway called = l

TrackGoAway not called = 0

tmContent -
Activate inactive window on click in content region = l

Don't activate inactive window on click in content region = 0

tmOragW -
DragWindow called = 1

DragWindow not ca lled = 0

tmSysC/ick -
SystemClick called = l

SystemClick not called = 0

tmOpenOA -
OpenNDA called = 1

OpenNDA not ca lled = O

tmMenuSe/ ­
MenuSelect called = 1

MenuSelect not"called = 0

tmFindW ­
FindWindow called = 1

FindWindow not called = 0

tmUpdote -
Update events handled = l

Update events not handled = 0

tmMenuKey ­
MenuKey called = 1

MenuKey not called = O

Figure 25-7
The wmtaskMask bit flag

25- 14 Chapter 25: Window Manager

Important

At the time of publication, bits 31-16 must be set to 0. In fact, TaskMaster will
return an error If they are not. Because these bits will mask off as yet unknown
features, applications wi ll continue to run even when the new features are
added.

Window Manager icon font
The standard document window definition uses a font to draw the close and zoom
boxes, and their highlighted states, in a window's title. If you would like to use
different icons, you can replace the default font. To replace the icon font, or just to
get the handle to the current font, call SetWindowlcons. The format of the font is
shown in Table 25-3.

Table 25-3
Window Manager Icon font

Character

0
1

2

Icon

Close box
Highlighted close
and zoom boxes
(same character for both)
Zoom box

Window record
The Window Manager keeps all the information it requires for its operations on a
particular window in a window record. The record contains the information the
Window Manager needs to manage windows. The complete window record is
accessed directly only by the Window Manager. Your application can directly access
only the part of the window record illustrated in Figure 25-8.

Not allowing direct access to the entire window record has advantages and
disadvantages. Access to window information is slower if calls have to be made to the
Window Manager. However, the delay could only be measured in milliseconds and
can't be seen on the screen. On the plus side, future Window Managers won't be tied
to an older, possibly inadequate, record structure. The chances of improving the
current Window Manager without affecting existing applications and of maintaining
compatibility across future hardware are greatly improved by allowing the window
record to change.

Window record 25-15

Many Window Manager calls need as input a window pointer that is returned from
NewWindow. That pointer points to the window's GrafPort.

Field Offset so~-----

2
3

4

wNext

1-------1

ADH! port '

AE
: wPoddlng l

BD 1-------­
BE

wStrucRgn

C l .__ ____,.
C2

wContRgn

C51-------1
C6

wUpdoteRgn

C 9 1-------1
CA

wControls

CD 1-------1
CE

wFromeCtrls

Dl
02------1

wFrome

Figure 25-8
Window record

Long-POINTER to next window in window list

170 bytes-Window's GrafPort; returned window pointers point to this

16 bytes-Reserved for future use

Long-HANDLE to window's entire region; frame plus content

Long-HANDLE to window's content region

Long-HANDLE to region that needs redrawing

Long-HANDLE to application's first control in content region

Long-HANDLE to frame's first control

Word-Bit flag that defines window

The settings for the wFrame parameter are described in the section "NewWindow" in
this chapter.

25-16 Chapter 25: Window Manager

Windows and Graf Ports
It's easy for your application to use windows; to the application, a window is a
GrafPort the application can draw into with QuickDraw II routines. When you create a
window, you specify a RECT data structure that becomes the port rectangle of the
GrafPort in which the window contents will be drawn. The bit map for this GrafPort,
its pen pattern, and other characteristics are the same as the default values set by
QuickDraw II. These characteristics apply whenever the application draws in the
window, and they can easily be changed with QuickDraw II routines.

There is, however, more to a window than just the GrafPort in which the application
draws. The other part of a window is called the window frame because it usually
surrounds the rest of the window. For drawing window frames, the Window Manager
creates a GrafPort that has the entire screen as its port rectangle.

Window frame colors and patterns
In addition to the standard window types and controls, the color of the window and
controls can be selected. Each 4-bit color is an index into either the default color
table or a color table pointed to by the wColor field in the NewWindow parameter list
(see Table 25-8 in the section "NewWindow" in this chapter). See Chapter 16,
"QuickDraw II," for more information about color tables.

The color table for document and alert windows is shown in Figure 25-9.

Offset Field

so
frameCo/or

Word-Color of window frame and alert frame
Bits 15-8 = 0 Bits 7-4 = Outline color

l Bits 3-0 = 0

2
titleColor

Word-Color of Inactive titte bar. inactive title . and active title
Bits 15-12 = 0 Bits ll -8 = Inactive title bar color

3 Bits 7-4 = Inactive title color Bits 3-0 = Color of title. close. and zoom boxes

4
tBarColor

5

Word-Color and pattern of title bar
Bits 15-8 = $0000 = Solid . SOOOl = Dither. $0002 = Lined Bits 7-4 = Pattern color
Bits 3-0 = Background color

6
growColor

7

Word-Color of size box and alert frame's middle outline
Bits 15-12 = Color of alert frame's middle outline Bits l Hl = 0

Bits 7-4 = Interior color of size box when not selected Bits 3-0 = Interior color of size box when selected

8
infoColor

Word -Color of information bar and alert frame's Inside outline
Bits 15-12 = Color of alert frame's Inside outline Bits l l-8 = 0

9 7-4 = Interior color of information bar Bits 3--0 = 0

Figure 25-9
Document and alert window color table

Window frame colors and patterns 25- 17

Figures 25-10 through 25-14 show how these colors are used.

D 0 I
11sl1411 311211111019Is 1116 Is 141312 I 1 Io I
I I yl) -

I I

C 0 Outline color 0

t
-

I I I I l2J
Document window

Alert window

Figure 25-10
Window frame color (jrameColor)

+ Title ___ ----_-_-_-_-_-_-_j---~

15 14 13

0

Flf,Jure 25-11
Window title color (ti tleColor)

25-18 Chapter 25: Window Manager

11 10 9 8

I I
Background
color of
title· s text
and title
bar when
inactive

Foreground
color of
title · s text
when
inactive

Foreground
color of
title . c lose.
and zoom
boxes when
active

I I

D + 0

>--

D
~

I c=J I
Document window

Fi~ure 25-12
Window t itle bar color (tBarColor)

-

D
-

I c=J I Q]

I I
I 1s I 14I13I12I11I1019 I a I 1 I 6 I s I 4 I 3 I 2 i 1 I o I

I I I I
I I

Pattern number Foreground
0 = Solid pattern
l = Dither color of
2 = Lined title bar

Alert window

t
I I
I 1s I 14 I 13 I 12 I 11 I 10 I 9 I a I 7 I 6 I s I 4
I I I I I I

I I I
Color of O Interior
alert frame 's color when
middle not selected
outline

I
I

I
Background
color and
title 's text
background
color

-I I
I

Interior
color when
selected

Fi~ure 25-13
Window size box and alert window's middle outline color (growColor)

Window frame colors and patterns 25- 19

=

I 1s 114113112I11I101 9 1 a 1 1 I 6 Is 14 1 3 1 2 11 1 o 1
I I I I I I I I

I I I I
Color of O Interior O
a lert frame's color
inside outline

Alert window

Fi~ure 25-14
Window Information bar and a lert window's inside outline color (infoColor)

Use the SetFrameColor routine to set the color table a window should use and the
GetFrameColor routine to get a pointer to the window's current color table.

How a window is drawn
When a window is drawn or redrawn, the window frame is drawn first, followed by the
window contents.

To draw the window frame, the Window Manager manipulates regions of the Window
Manager port as necessary to ensure that only what should be drawn is drawn. It then
calls the window definition procedure with a request that the window frame be drawn.
The window definition procedure is either within the Window Manager or in the
application for custom windows (see the section "Defining Your Own Windows" in
this chapter).

To draw the window contents, the Window Manager generates an update event.
Whenever your application receives an update event, the application should
respond as follows:

1. Call the BeginUpdate routine. This routine temporarily replaces the visible
region of the window's GrafPort with the intersection of the visible region and the
update region. It then clears the update region for that window.

2. Draw the window contents.

3 . Call the EndUpdate routine to restore the actual visible region.

Update events are issued for the frontmost window first and the hindmost last.

25-20 Chapter 25: Window Manager

Draw content routine

When the NewWindow call is used to open a new window, the Window Manager
checks the wContDejProc field . If that field is nonzero, the value is considered to be
the address of a routine in your application that will draw the window's content
region.

The wContDe}Proc field must be set if you want to use window frame scroll bars
(which are the scroll bars TaskMaster creates). TaskMaster will scroll the content and
call wContDejProc to update the uncovered area when the user performs a scrolling
action. wContDejProc could be considered a control action procedure.

The wContDejProc field might be useful even if you are not using window frame scroll
bars. TaskMaster can handle your update events if wContDejProc is set. TaskMaster
will call BeginUpdate, wContDejProc, and EndUpdate.

There are no inputs or outputs to your draw content routine.

•:• Note: Use the QuickDraw II routine GetPort to obtain the current window
pointer.

Draw what is needed in the content and perform an RTL to exit. Remember that the
content will have already been erased using the window port's background pattern
and that the visible region is set to the area needing to be redrawn.

Warning

Do not change ports or perform a QuickDraw II SetOrigln call while In your draw
content routine.

Draw information bar routine

If the ftnfo bit (bit 4) is set to 1 in the wFrameBits field of the NewWindow parameter
list, the window will have an information bar that appears just above the content
region. The width of the information bar is same as the width of the window, and the
height of the information bar is specified by the w!nfoHeight field in the
NewWindow parameter list.

The Window Manager draws the information bar, but it is up to the application to
draw any information inside the bar. Your application can do this by storing the
address of a draw information bar routine in the w!nfoDejProc field of the
NewWindow parameter list (and you must also set the ftnfo bit of wFrame). When
the standard window frame definition procedure draws the empty information bar, it
will also call the procedure pointed to by w!nfoDejProc.

How a window Is drawn 25-21

The inputs to your routine will be as follows:

-- infoBarPtr

-- infoData

-- theWindowPtr

RTI I RTI

RTI 1~ SP

--·

--·

--·

Long-POINTER to RECT data structure specifying enclosing rectangle

Long-wlnjoRefCon value from NewWindow parameter list

Long-POINTER to window's GrafPort

3 bytes- RTL address

An assembly-language example of a draw information bar routine that prints a string
looks like this:

I nfoDefProc START

theWindow equ 6

InfoData equ theWindow+4

InfoBar equ InfoData+4

phd

tsc

tcd

Position the pen at the text

ldy Ueft side -
lda [InfoBar l, y

clc

adc f20

pha

ldy ftop_ side

lda [InfoBar] ,y

clc

adc uo
pha

MoveTo

Save the current direct page

; Switch to direct page in stack

starting point------------------------------------;

(Where left_side equals 2)

Get the left side of the information bar,

plus a tab over, to get

a starting X position (pass to _MoveTo)

(Where top_side equals 0)

Get the top side of the information bar ,

plus enough to vertically center the text , to

get a starting Y position (pass to _MoveTo)

Move the pen to the starting point.

25-22 Chapter 25: Window Manager

--- Print the text on the information bar----------------------------- -----------------

pea infoStrgl-16 Pass high word of string

pea infoStrg

_Drawstring

Pass low word of string

Print the string

--- All done , now clean up stack and return to Window Manager --------------------· '
ply Get original direct page back

lda 2 , s Move return down over input parameters

sta <14 Works because stack and direct page are equal

lda 0 , s

sta <12

tsc Now move stack pointer over input parameters

clc

adc

tcs

tya

tcd

rtl

in fo St r g de

END

#12

i 1 8 1 , c 1 MyTitle 1

Number of bytes of input parameters

New stack

Restore original direct page

Ba ck to Window Manager

The example takes some liberties, such as assuming the color and writing mode of the
pen when the text is written. When entered, the current port is the Window
Manager's . You may change the pen location, color, and writing mode without
saving the original port state. However, that's as much as you should do without first
saving the port state and then restoring it on exit.

Another liberty the example takes is when the text is centered vertically. You should
make QuickDraw calls to find font height, to find the InfoBar height, and then to
actually center the text. You should always use InfoBar as offsets into the information
bar interior because the height could be different from time to time.

Important
Do not change the current port's c lipRgn or visRgn fields unless you save and
restore the original value.

How a window is drawn 25-23

Making a window active: activate events
A number of Window Manager routines change the state of a window from inactive to
active or from active to inactive. For each such change, the Window Manager
generates an activate event, passing along the window pointer in the event message.
The activeFlag bit in the modifiers field of the event record is set if the window has
become active; it is cleared if it has become inactive.

When the Event Manager finds out from the Window Manager that an activate event
has been generated, it passes the event on to the application (via the GetNextEvent
function). Activate events have the highest priority of any type of event.

Usually when one window becomes active another becomes inactive and vice versa,
so activate events are most commonly generated in pairs. When this happens, the
Window Manager generates first the event for the window becoming inactive and
then the event for the window becoming active. Sometimes only a single activate
event is generated-such as when there's only one window in the window list or when
the active window is permanently discarded (because it no longer exists).

Activate events for dialog and alert windows are handled by the Dialog Manager. In
response to activate or inactivate events for windows created directly by your
application, you might take actions such as the following:

• Inactivate controls in inactive window and activate controls in active windows.

• Remove the highlighting or blinking cursor from text being edited when the
window becomes inactive and restore it when the window becomes active.

• Enable or disable a menu or certain menu items to match what the user can do
when windows become active or inactive.

25-24 Chapter 25: Window Manager

Defining your own windows
You may want to define your own type of window, such as a round or hexagonal
window; QuickDraw and the Window Manager allow you to define your own window
shape.

To define your own type of window, you must write a window definition procedure
that defines the appearance and behavior of the window. Then, when the Window
Manager needs to do something, it calls your routine and not its own.

You pass the address to the NewWindow call in the wFrameDejProc parameter (see
the section "NewWindow" in this chapter). The inputs to your routine are

Stack before call

previous contents

varCode

-- theWindowPtr

-- params

Stack after call

previous contents

outcomeFlag

--·

--·

Word-Operation to be performed

Long-POINTER to window's GrafPort

Long- Parameters used by some messages

~SP

Long-Returned parameter flag

~SP

The varCode parameters are shown in Table 25-4.

Table 25-4
The varCode parameters for custom windows

Value Name Description

0 wDraw Draw window frame
1 wHit Tell what region the cursor was in

when the mouse button was pressed
2 wCalcRgns Calculate wStructRgn and wContRgn
3 wNew Do any additional window initialization
4 wDispose Take any additional disposal actions
5 wGrow Draw window's grow image

Defining your own windows 25-25

What you can expect in response to each of the codes is described immediately
following the wContDejProc example.

Your routine must strip off the three input parameters and return via RTL. So the
shell of your wContDejProc routine might be as follows:

MyWindow

actions

draw wind

test hit

calc_rgns

25-26

START

lda 12,s

asl a

tax

lda >actions , x

pha

rts

de

de

de

de

de

END

START

i2' draw wind-1 '

i2'test hit-1 '

i2 ' calc_ rgns-1 '

i2 ' init wind-1'

i2 ' kill wind-1 '

(code that draws window frame)

jmp exit

END

START

Get varCode

Go to action handler

Routine to draw window's frame

Routine to find a window region

at a given point

Compute window's wStructRgn and wContRgn

Do additional initialization

Do additional disposal

(code that finds area of the window in which the point in params is located)

jmp exit

END

START

(code that computes the window 's wStructRgn and wContRgn)

jmp exit

END

Chapter 25: Window Manager

init wind START

(code that performs additional initialization)

jmp exit

END

kill wind START

(code that performs additional disposal)

jmp exit

END

exit START

lda 2, s Move return address

sta 12,s

lda l,s

sta 11,s

tsc Strip off input parameters

sec

sbc #10

tcs

rtl Return to Window Manager

END

wDraw: draw a window frame
Your routine should draw in the current GrafPort, which will be the Window Manager
port. The Window Manager will request this operation only if the window is visible.

The structure of the params parameter is as follows:

wDrawFrame $00 Draw window's entire frame.
winGoAway $01 Draw go-away region.
winZoom $02 Draw zoom region.
Bit 31 1 Draw frame or region as highlighted.

0 Draw frame or region as unhighlighted.

Thus, valid params values are as follows:
$00000000 Draw entire window frame as an inactive window.
$80000000 Draw entire window frame as an active window.
$00000001 Draw go-away region as unhighlighted.
$80000001 Draw go-away region as highlighted.
$00000002 Draw zoom region as unhighlighted.
$80000002 Draw zoom region as highlighted.

Defining your own windows 25-27

wHit: find what region a point is in

The params parameter specifies the point to check. The vertical coordinate is in the
low-order word and the horizontal coordinate in the high-order word. The Window
Manager requests this operation only if the window is visible. Your routine should
determine where the point is in your window and then return one of the following:

wNoHit 0 Not on the window at all
winContent 19 In window's content region
winDrag 20 In window's drag (title bar) region
winGrow 21 In window's size box region
winGoAway 22 In window's go-away (close box) region
winZoom 23 In window's zoom (zoom box) region
wininfo 24 In window's information bar
winFrame 27 In window, but not in any of the above areas

Usually, wNoHi t means the given point isn't anywhere within the window, but this is
not necessarily so.

wCalcRgns: calculate a window's regions

Your routine should calculate the window's entire region, place it in the wStrucRgn,
and place the content region in wContRgn based on the current Grafport's port
rectangle. The Window Manager requests this operation only if the window is visible.

Warning

When you calculate reg ions for your window, do not alter the c/ipRgn or visRgn
fields of the window's GrafPort.

wNew: perform additional initialization

After initializing fields appropriately when creating a new window, the Window
Manager sends the message wNew to your routine. This gives your routine a chance
to perform any initialization it may require. For example, because the structure of
the window record is not documented, you may want to allocate your own record
structure, initialize it, and store its pointer via a SetWRefCon call.

25-28 Chapter 25: Window Manager

wDispose: remove a window
The Window Manager's CloseWindow and DisposeWindow procedures send this
message so your routine can carry out any additional actions required whe.':l
disposing of the window. The routine might, for example, release space that was
allocated by the initialize routine. The routine is called before all controls in the
wControls and wFrameCtrls lists are removed via a KillControls call to the Control
Manager, the port is closed, and the window record freed. Return O to continue
closing or 1 to abort closing.

wGrow: draw the outline of a window
The params parameter is a pointer to a RECT data structure defining a rectangle.
Your routine should draw an outline image of your window that would fit the specified
rectangle. The Window Manager requests this operation repeatedly as the user drags
inside the grow region. Your routine should use the GrafPort's current pen pattern
and pen mode.

Origin movement
This section describes in detail how the origin of a window can change and what the
effects of that change are. To benefit from the following discussion, you should
already be familiar with QuickDraw II's explanation of ports and boundsRect.

The origin of a window is what allows data to be scrolled and drawing to occur in the
proper place after a scroll. In Figure 25-15, the gray area is a screen with the pixel in
its upper left corner being 0,0 (coordinates are shown here as Y,X). The window port
appears on the screen at 65,50 to 85,80. These points are called global coordinates.
To draw the house, the X coordinate of the left side would be 60; that is, it would be 10
pixels inside the window port.

0 50
0

65

Window port

Figure 25-15
Window origin

~

Screen

I+- Bounds rectangle

85

80

Origin movement 25-29

However, a window port has its own coordinates, called local coordinates. Figure
25-16 shows what really happens when a window is created. Although the window is
still at 65,50 to 85,80 on the screen, the local coordinates of the window are 0,0 to
20,30. Notice that the window's height and width remain the same. Also notice that
the window is now called the port rectangle and the screen the bounds rectangle.

To draw the left wall of this house, you would pass the X coordinate of 10 to
QuickDraw II to draw a single vertical line. QuickDraw II would then subtract the X
origin of the boundsRect to determine where on the screen to actually draw the line.
So, 10 minus -50 is 60. The global coordinate is 60; the local was 10. You will always
work with local coordinates; that way, if the window is moved, its coordinate system
remains the same. This explains what happens to the horizontal axis; the same thing
happens with the vertical axis.

The Window Manager changes the coordinates of the bounds rectangle when the
window is moved. If the window is moved one pixel to the left, the boundsRect would
become -65,-49. When the coordinate of 10 is passed to QuickDraw II, it computes
the global coordinate of 59 (10 minus -49). Thus, even though the house is drawn on
another place on the screen, it is drawn in the same place in the window, and the
application doesn't have to make any changes.

- 50 0 10
- 65

Screen
0 ..,_ Bounds rectangle

~
Port rectangle

20

30

Figure 25-16
Window moving and origins

25-30 Chapter 25: Window Manager

In the previous simple examples, everything had origins of 0,0. However, one of the
powerful features of windows is their ability to scroll to show more data than the
screen allows. In the next example, the window has not moved, but the user has
scrolled the picture using the bottom scroll bar (see Figure 25-17). When the user
moved the thumb on the scroll bar, the rectangle (0, 10,20,30) was scrolled (moved)
to (0,0,20,20). Then the origin of the window was changed to 0, 10, and the exposed
rectangle on the right side was redrawn in an update event.

After the scrolling occurred, the application would pass the coordinate of 10 to draw
the left side of the house and QuickDraw II would compute 10 minus -40 to get the
global coordinate of 50. Now, a minor problem arises: the Window Manager needs
every window to have an origin of 0,0 for it to move, grow, and overlap windows.
This feature may eventually change, but for now, whenever the Window Manager is
called, the origin of every window must be 0,0.

- 40 10
-65

Screen
0 .,_ Bounds rectangle

~
Port rectangle

20

40

Figure 25-17
Scrolling and window origins

For example, whenever TaskMaster calls your update routine, it switches to the
window's port and sets its origin; in this example it would be SetOrigin(O, 10). Then
you can draw in the window's local coordinates. When you have finished drawing
and return to TaskMaster it performs a SetOrigin(O,O).

Even though changing the origin does not change the screen, any drawing outside of
your update routine without setting the origin would have undesirable results.
Drawing your house with the origin still at 0,0 would produce two houses, one shifted
10 pixels to the right of the other. To draw outside of your update routine, you need
to first set the origin either yourself or through a StartDrawing call and then perform a
SetOrigin(O,O) to put it back.

In short, when drawing outside of your update routine, you must perform a
StartDrawing call before drawing and a SetOrigin(O,O) when you are finished
drawing. This is also true when you are performing a hit test in your content region;
the event position must be converted to local coordinates.

Origin movement 25-31

$010E

Parameters

Errors

C

$020E

Parameters

WindBootlnit
Initializes the Window Manager; called only by the Tool Locator.

Warning

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.

None

Call must not be made by an application.

WindStartUp
Starts up the Window Manager for use by an application.

Important

Your application must make this call before it makes any other Window Manager
calls.

Stack before call

previous contents

userID

Stack after call

Word-ID number of application

f- SP

I previous contents If- SP

Errors

C

None

extern pascal void WindStartUp (userID)

Word user ID;

25-32 Window Manager housekeeping routines

$030E WindShutDown
Shuts down the Window Manager down when an application quits.

Important
If your application has started up the Window Manager, the application must
make this call before It quits.

Parameters

Errors

The stack is not affected by this call. There are no input or output parameters.

None

C extern pascal void WindShutDown ()

$040E WindVersion
Returns the version number of the Window Manager.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

versionlnfo

Errors None

Word-Space for result

~SP

Word-Version number of Window Manager

~SP

C extern pascal Word WindVersion ()

Window Manager housekeeping routines 25-33

$050E Wind Reset
Resets the Window Manager; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are no input or output parameters.

Errors None

C Call must not be made by an application.

$060E WindStatus
Indicates whether the Window Manager is active.

Parameters

Stack before call

previous contents

wordspace

Stack after call

previous contents

activeFlag

Errors None

Word-Space for result

f- SP

Word-BOOLEAN; TRUE if Window Manager active, FALSE if inactive

f-SP

C e xt e r n pascal Boolean Wi ndSt a t us()

25-34 Window Manager housekeeping routines

$1EOE

Parameters

BeginUpdate
Replaces the visible region of the window's GrafPort with the intersection of the visible
region and the update region and then sets the window's update region to an empty
region.

Call BeginUpdate when an update event occurs for the window. You would then
usually draw the entire content region, although it suffices to draw only the visible
region. In either case, only the parts of the window that require updating and are
visible will actually be drawn on the screen. Every call to BeginUpdate must be
balanced by a call to the EndUpdate routine, as follows:

1 . Call BeginUpdate.

2 . Draw the window contents.

3 . Call the EndUpdate routine to restore the actual visible region.

Stack before call

previous contents

-- theWindowPtr Long- POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void BeginUpda te (t heWi ndowPt r)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-35

$240E

Parameters

BringToFront
Brings a specified window to the front of all other windows and redraws the windows as
necessary but does not do any highlighting or unhighlighting. Normally you won't
have to call this procedure; you should call SelectWindow to make a window active,
and SelectWindow takes care of bringing the window to the front. If you do call
BringToFront, however, remember to call HiliteWindow to make any necessary
highlighting changes.

Stack before call

previous contents

- - theWindowPtr Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void BringToFront (theWindowPtr)

Graf PortPtr theWindowPtr ;

25-36 Window Manager routines

$0AOE CheckUpdate
Looks from top to bottom in the window list for a visible window that needs updating
(that is, for a window whose update region is not empty). CheckUpdate is normally
called only by the Event Manager, and doesn't need to be called by an application.

If a window with something in its update region is found, an update event for that
window is stored in the event and the routine returns TRUE. If it doesn't find such a
window, it returns FALSE.

Parameters

Stack before call

previous contents

wordspace

theEventPtr

Stack after call

previous contents

updateFlag

Errors None

Word-Space for result

Long-POINTER to an event record

f-SP

Word-BOOLEAN; TRUE if update event found, otherwise FALSE

f-SP

C extern pascal Boolean CheckUpdate(theEventPtr)

EventRecordPtr theEventPtr ;

Window. Manager routines 25-37

$OBOE

Parameters

Close Window
Removes a specified window from the screen, disposes of all controls associated with
that window, and deletes the window from the window list. The routine releases the
memory occupied by all data structures associated with the window, including the
memory taken up by the window record if it was allocated by NewWindow. Call this
routine when you're done with a window.

Any update events for the window are discarded. If the deleted window was the
frontmost window, the window behind it (if any) is highlighted and an appropriate
activate event is generated.

Warning
If you allocated memory yourself and stored a handle to it In the wRefCon field,
CloseWlndow won't know about It- you must release the memory before ca ll ing
CloseWlndow.

Stack before call

prevtous contents

-- theWindowPtr Long-POINTER to window's GrafPort

~SP

Stack after call

prevtous contents I
--------~SP

Errors None

C extern pascal void CloseWindow (theWindowPtr)

GrafPortPtr theWindowPtr ;

25-38 Window Manager routines

$0COE Desktop
Controls the addition of regions to and subtraction of regions from the desktop and
controls the current desktop pattern. The values for the deskTopOp and dtParam
parameters are shown in Table 25-5.

Parameters

Stack before call

previous contents

-- longspace

deskTopOP

-- dtParam

Stack after call

previous contents

retParam

Errors None

- - ·

--·

Long-Space for result if necessary

Word- Operation to perform

Long- Parameter needed for operation

~SP

Long- Possible return parameter (see Table 25-5)

~SP

C extern p a scal Pointer Desktop (deskTopOP , dtPa ram)

Word deskTopOP ;

Longword dtParam ;

Window Manager routines

(continued)

25-39

Table 25-5
Window Manager Desktop routine operations and parameters

Operation

FromDesk

ToDesk

GetDesktop

Operation
number

0

1

2

Description and dfParam and ref Pa ram values

Subtract region from desktop region.

dtParam-HANDLE to region to be subtracted
retParam-Not used

The region passed in dtParam will be subtracted from the current
desktop region. When the Window Manager redraws the desktop, it
will not draw the region subtracted. Windows will not cover the
subtracted region and will appear to move underneath the region.
For example, the Menu Manager subtracts a region from the desktop
for the system menu bar, which is why windows move under the
system menu bar.

FromDesk can be called repeatedly to remove additional areas
from the desktop.

Add region to current desktop region.

dtParam-HANDLE to region to be added
retParam-Not used

When the Window Manager redraws the desktop, it will also draw the
region added. ToDesk can be called repeatedly to add additional
areas to the desktop.

Return handle to current desktop region.

dtParam-Not used
retParam-HANDLE to desktop region

The handle returned is the actual handle to the desktop region; any
modifications to this region will change the desktop. Using the
handle, you can add, subtract, or XOR a region; find intersections;
and perform other region operations. This call can also be used for
restoring the desktop to its original shape after modifying it for
some temporary use (see SetDesktop for restoring the desktop).

Warning

Do not free the handle of the desktop region; that will cause
the Window Manager to crash.

25-40 Window Manager routines

Table 25-5 (continued)
Window Manager Desktop routine operations and parameters

Operation

SetDesktop

GetDeskPat

SetDeskPat

GetVisDesktop

Operation
number

3

4

5

6

Description and dtParam and retParam values

Set handle to desktop region.

dtParam-HANDLE to new desktop region
retParam-Same as param

After SetDesktop is called, the new handle will be used by the
Window Manager for the handle of the desktop region. It is not
necessary to call SetDesktop if you have called GetDesktop and
modified the region because GetDesktop returns the actual
desktop handle.

Warning

SetDesktop overwrites the c urrent desktop region handle.
Therefore, it is up to the application to free the original handle
or save It and restore it later.

Return current desktop pattern.

dtParam-Not used
retParam-Current desktop pattern (see Table 25-6)

GetDeskPat returns information about how the desktop is being
drawn. There are several ways the desktop can be drawn, as shown
in Table 25-6.

Set new desktop pattern. The desktop is redrawn with the new
pattern.

dtParam-New desktop pattern (see Table 25-6)
retParam-Not used

SetDeskPat changes how the desktop is drawn. There are several
ways the desktop can be drawn, as specified in Table 25-6.

Return desktop, less any windows.

dtParam-Handle to region that will be set to the visible desktop
retParam-Not used

The current desktop region minus any visible windows is copied into
the given region. The visible desktop can be used for drawing on the
desktop. See the following discussion of BackGround.Rgn for an
extension to GetVisDesktop.

(continued)

Window Manager routines 25-41

Table 25-5 (continued)
Window Manager Desktop routine operations and parameters

Operation

BackGroundRgn

Operation
number

7

Description and dfParam and ref Pa ram values

Mairttain visible desktop region.

dtParam-Handle to a region
retParam-Not used

The region passed will be set to the desktop region less any windows.
The region is automatically updated when windows are added,
removed, sized, and moved. This operation provides applications
an easy way of drawing objects directly on the desktop. A possible
sequence for drawing objects on the desktop might be as follows:

pha

pha

pea

pea

pea

SetDeskPat

MyDeskDrawl-16

MyDeskDraw

_ Desktop

pla

pla

pea MyDeskPortl-16

pea MyDeskPort

_OpenPort

pha

pha

pea

lda

pha

BackGroundRgn

MyDeskPort +Vi sRgn+2

lda MyDeskPort+VisRgn

pha

_Desktop

pla

pla

; Space for result (not used)

Operation number 5

Pass address of my routine

that will draw the desktop

Result not used

Open a port for my desktop

Space for res ult (n ot used)

Operation number 7

Pass handle of my desktop
port ' s visRgn

Result not used

25-42 Window Manager routines

Table 25-5 (continued)
Window Manager Desktop routine operations and parameters

Operation

Operation

number Description and dt Pa ram and ref Pa ram values

After this code is executed, the routine MyDeskDraw will be called
by the Window Manager whenever the desktop needs to be drawn.

The preceding code passed the value of the visRgn field of a port to
the Window Manager. The Window Manager will use that value to
compute the visible desktop. Then, when an application wants to
draw an object on the desktop, it can switch to MyDeskPort and
draw. All drawing will be clipped to the current visible desktop.

•!• Note: The address of the routine passed to the Desktop routine
for operation SetDeskPat (operation 5) is still a routine that is
called with the current port being the Window Manager's with its
clip region set to the visible desktop. To draw whenever you want,
you'll have to use your own port and your own visible region.

Desktop patterns
There are no inputs to or outputs from the routine called to draw the desktop. The
current port will be the Window Manager's, and the clipping region will be set to the
area needing to be drawn. Your routine should exit via an RTL.

Warning
The current direct page and data bank are not defined on entry to your routine.
When you exit your routine, the direct page and data bank must be the same
as they were on entry.

The desktop pattern is determined by a long value, as shown in Table 25-6.

Table 25-6
Desktop patterns

Byte 1 Byte 2 Byte 3 Byte 4

$00 Address of routine that will be called to draw desktop

$80 Address of pattern to be used for desktop (see Chapter 16, "QuickDraw II")

$40 00 00 = Solid desktop pattern
01 = Dithered desktop pattern
02 = Horizontally striped

desktop pattern

High nibble = Pattern's foreground color
Low nibble = Pattern's background color

Window Manager routines 25-43

$1AOE

Parameters

DragWindow
Pulls around a dotted outline of a specified window, following the movements of the
mouse until the mouse button is released. When the button is released, DragWindow
calls MoveWindow to move the specified window to the location to which it was
dragged. The window will be dragged and moved in its current plane.

When there is a mouse-down event in the drag region of the specified window and
TaskMaster is not being used, the application should call DragWindow with startY,
startX equal to the point where the mouse button was pressed (in global coordinates,
as stored in the where field of the event record).

Stack before call

previous contents

grid

startX

startY

grace

Word-Drag resolution, zero for default (see Table 25-7)

Word-Starting X coordinate of cursor, in global coordinates

Word-Starting Y coordinate of cursor, in global coordinates

Word-Grace buffer around bounds

-- boundsRectPtr --· Long-POINTER to RECT structure for cursor boundary, NIL for default

-- theWindowPtr --· Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents I
--------~SP

Errors

C

25-44

None

extern p a scal void DragWindow(grid , startX, startY , grace , boundsRectPtr ,

theWindowPtr)

Word grid;

Integer startX ;

Integer start Y;

Word grace ;

Rect *boundsRectPtr ;

GrafPortPtr theWindowPt r ;

Window Manager routines

You can also use the following alternate form of the call:

extern pascal void DragWindow(grid , start,grace ,boundsRectPtr ,theWindowPtr)

Word

Point

Word

grid ;

start ;

grace;

Rect *boundsRectPtr;

GrafPortPtr theWindowPtr ;

Parameter description

grid

startYand startX

The allowed horizontal resolution movement, as shown in
Table 25-7. The grid parameter is provided to speed up window
moves by eliminating the need for bit shifting, if the grid value
is the correct value. If grid is passed as 0, a default value will be
used. The defaults are 4 for 320 mode and 8 for 640 mode. The
only allowed values are 1, 2, 4, 8, 16, 32, 64, 128, and so on.

Table 25-7
DragWindow grid values

Value Window movement

0 Default value used.
1 Window can be positioned at any horizontal position.
2 Window can only be moved a multiple of 2 pixels

horizontally.
4 Window can only be moved a multiple of 4 pixels

horizontally.
8 Window can only be moved a multiple of 8 pixels

horizontally.

Indicate where the mouse button was pressed, in global
coordinates, as stored in the where field of the event record.
This point is used with the tracked cursor position to compute
the movement delta.

(continued)

Window Manager routines 25-45

grace

boundsRectPtr

The distance, in pixels, that you will allow the cursor to move
away from the bounds rectangle before the dragged outline
should be snapped back to its starting position. TaskMaster
uses 8 for this value. The bounds rectangle is expanded by the
value of grace to compute the slop rectangle that is passed to
DragRect as the slopRect parameter. See the section
"DragRect" in Chapter 4, "Control Manager," in Volume 1 for
more information.

Pointer to a RECT data structure, in global coordinates, that is
passed to DragRect as the ltmttRect parameter. See the section
"DragRect" in Chapter 4, "Control Manager," in Volume 1 for
more information. If NIL is passed for the pointer, the bounds
of the desktop, minus 4 all around, will be used.

25-46 Window Manager routines

$510E

Parameters

Errors

C

$1FOE

Parameters

EndlnfoDrawing
Puts the Window Manager back into a global coordinate system. Call this routine after
a StartinfoDrawing call and before any other calls to the Window Manager.

Warning

Calling any Window Manager routine between a StartlnfoDrawlng call and an
EndlnfoDrawlng call may result In system failure.

The stack is not affected by this call. There are no input or output parameters.

None

e xtern pascal void EndinfoDrawi ng()

End Update
Restores the normal visible region of a specifed window's GrafPort that was changed
by a BeginUpdate call.

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
--------f-SP

Errors None

C e xtern pascal void EndUpdate (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-47

$170E FindWindow
Tells which part of which window, if any, the cursor was in when the user pressed the
mouse button. If it was pressed in a window, the whichWindowPtrparameter is set to
the window port pointer; otherwise, it's set to NIL.

When a mouse-down event occurs, the application should, if not using TaskMaster,
call FindWindow with pointX and pointY equal to the point where the cursor was when
the user pressed the mouse button (in global coordinates, as stored in the where field
of the event record) .

Parameters

Stack before call

previous contents

wordspace

- - which WindowPtr

pointX

pointY

Stack after call

previous contents

--·

Word-Space for result

Long-POINTER to space to store pointer to window; NIL if not found

Word-X point to check, in global coordinates

Word-Y point to check, in global coordinates

f-SP

location Word-Mouse-down event location (see Table 25-8)

f-SP

Errors None

C extern pascal Word FindWindow(whichWindowPtr , pointX , pointY)

GrafPortPtr *whichWindowPtr ;

25-48

Integer

Integer

pointX ;

pointY ;

You can also use the following alternate form of the call:

e xtern pascal Word FindWindow (whichWindowPtr , point)

GrafPortPtr *wh ichWi ndowPtr ;

Po int point ;

Window Manager routines

Mouse-down event location information
The location returned by FindWindow is one of the constants shown in Table 25-8.

Table 25-8
FindWindow constants

Word Event

$0000 wNoHit
$0010 winDesk
$0011 winMenuBar
$0013 winContent
$0014 winDrag
$0015 winGrow
$0016 winGoAway
$0017 winZoom
$0018 wininfo
$0019 winSpecial

$001A winDeskitem
$001B winFrame

$001C winactMenu
$8xxx winSysWindow

Description

Not in the window at all
In the desktop area
In the system menu bar
In window's content region
In window's drag (title bar) region
In window's size box region
In window's go-away (close box) region
In window's zoom (zoom box) region
In window's information bar
In special menu item bar (see Chapter 13, "Menu
Manager," in Volume 1)
Desk accessory selected from the Apple menu
In window, but not in any of the areas defined in this
table
Inactive menu item selected
In a system window

Window Manager routines 25-49

$150E Front Window
Returns a pointer to the first visible window in the window list (that is, the active
window). If there are no visible windows, the routine returns N1L.

Parameters

Stack before call

previous contents

longspace

Stack after call

previous contents

-- theWindowPtr

Errors None

Long-Space for result

~SP

Long-POINTER to active window's GrafPort; N1L if none visible

~SP

C extern pascal GrafPortPtr FrontWindow()

25-50 Window Manager routines

$480E GetContentDraw
Returns the pointer to the routine that draws the content region of a specified window.

TaskMaster calls this routine when it gets an update event for that window. See the
section "Draw Content Routine" in this chapter for more information about the draw
routine.

Parameters

Stack before call

previous contents

longspace

-- theWindowPtr

Stack after call

previous contents

-- contentProcPtr

Errors None

Long-Space for result

Long-POINTER to window's GrafFort

f-SP

Long-POINTER to routine called to draw content region

f-SP

C extern p a scal VoidProcPtr GetContentDraw (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-51

$3EOE

Parameters

GetContentOrgin
Returns the values used by TaskMaster to set the origin of the window's GrafPort when
handling an update event. The values are also used to compute scroll bars in the
window frame.

Stack before call

previous contents

longspace Long-Space for result

theWindowPtr Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents

Errors

C

25-52

origin

None

Long-POINT; low word = Y origin, high word = X origin

f-SP

extern pascal Long GetContentOrigin (theWindowPtr)

Pointe r t he Wi ndowPtr ;

•:• Note: C Pascal-type functions do not deal properly with data structures returned
on the stack. The Long result returned by this call can be passed to any calls
requiring a point as a parameter. You cannot use the C dot operator to access the
individual Y and X coordinates within the value returned by this call.

Window Manager routines

$2FOE GetContentRgn
Returns a handle to a specified window's content region. See the section "Window
Regions" in this chapter for a definition of the content region.

Parameters

Stack before call

previous contents

longspace

-- theWindowPtr

Stack after call

previous contents

wContHandle

Errors None

Long-Space for result

Long-POINTER to window's GrafFort

f- SP

Long-HANDLE to window's content region

f-SP

C extern pascal RgnHandle GetContentRgn(theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-53

$400E

Parameters

GetDataSize
Returns the height and width of the data area of a specified window. The data area is
the total amount of data that can be viewed in a window through resizing or scrolling.

Stack before call

prevtous contents

longspace Long- Space for result

theWtndowPtr Long- POINTER to window's GrafFort

f-SP

Stack after call

previous contents

Errors

C

25-54

dataSize

None

Long- Low word = height; high word = width

f-SP

extern pascal Longword GetDataSize (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines

$310E GetDefProc
Returns a pointer to the routine that is called to draw, hit test, and otherwise define a
window's frame and behavior.

Parameters

Stack before call

previous contents

longs pace

theWindowPtr

Stack after call

previous contents

wDefProcPtr

Errors None

Long-Space for result

Long-POINTER to window's GrafPort

f-SP

Long-POINTER to window's definition procedure

f-SP

C extern pascal LongProcPtr GetDefProc(theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-55

$520E

Parameters

GetFirstWindow
Returns a pointer to the first window in the Window Manger's window list. The
returned window may not be the active window (see the section "FrontWindow" in this
chapter). Every window in the window list, whether visible or not, can be accessed if
you call GetFirstWindow and then call the GetNextWindow routine to run down the
remainder of the window list.

Stack before call

previous contents

longspace

Stack after call

previous contents

- - firstWindowPtr

Errors None

Long-Space for result

f-SP

Long- POINTER to first window, or NIL

f-SP

C extern pascal GrafPortPtr GetFirstWindow()

25-56 Window Manager routines

$100E GetFrameColor
Returns the color of a specified window's frame. See the section "Window Frame
Colors and Patterns" in this chapter for a definition of the color table.

Parameters

Stack before call

previous contents

colorPtr Long-POINTER to five-word table to be filled with window's color table

theWindowPtr Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C e xt e r n pasc al void GetFrameColor (colorPtr , t he Wi ndowPtr)

Wi ndColorPtr

GrafPortPtr

colorPtr ;

theWin d owPtr ;

Window Manager routines 25-57

$4AOE

Parameters

GetlnfoDraw
Returns the pointer to the routine that draws the information bar for a specified
window. If the window has an information bar routine, the standard window
definition procedure calls that routine whenever the window's frame needs to be
drawn. See the section "Draw Information Bar Routine" in this chapter for more
information about that routine.

Stack before call

previous contents

longspace

-- theWindowPtr

Stack after call

previous contents

infoDrawPtr

Errors None

Long-Space for result

Long-POINTER to window's GrafPort

f- SP

Long-POINTER to routine to draw infomation bar

f-SP

C e xtern pasca l VoidProcPt r Get infoDraw(t he Wi ndowPt r)

GrafPortPtr t he WindowPtr ;

25-58 Window Manager routines

$350E GetlnfoRefCon
Returns the value of a specified window's wlnjoRejCon field (the value associated with
the draw information bar routine). The field is reserved for application use.

Parameters

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

infoRejCon

Errors None

Long- Space for result

Long- POINTER to window's GrafFort

f-SP

Long-Value passed to draw information bar routine

f-SP

C e xtern pascal Longword GetinfoRefCon (theWi ndowPt r)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-59

$420E GetMaxGrow
Returns the maximum values to which a specified window's content region can grow.

Parameters

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

Long- Space for result

Long-POINTER to window's GrafPort

f-SP

maxGrow Long- Low word = maxHeight; high word = maxWidth

f-SP

Errors None

C e xtern pascal Longword GetMaxGrow (theWindowPtr)

GrafPortPtr theWindowPtr ;

25-60 Window Manager routines

$2AOE

Parameters

GetNextWindow
Returns a pointer to the next window in the window list after a specified window;
returns NIL if the specified window is the last window in the window list.

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

-- nextWindowPtr

Errors None

Long-Space for result

Long-POINTER to window's GrafPort

~SP

Long-POINTER to next window's GrafPort in list; NIL if last window

~SP

C extern pascal GrafPortPtr GetNextWindow (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-61

$460E GetPage
Returns the number of pixels by which TaskMaster will scroll the content region when
the user selects the page regions on window frame scroll bars.

Parameters

Stack before call

prevtous contents

longs pace

-- theWindowPtr

Stack after call

previous contents

pageAmount

Errors None

Long-Space for result

Long-POINTER to window's GrafFort

~SP

Long-Low word = vertical amount; high word = horizontal amount

~SP

C extern pascal Longword GetPage (theWindowPtr)

GrafPortPtr theWindowPtr ;

25-62 Window Manager routines

$4FOE

Parameters

GetRectlnfo
Sets the information rectangle to the coordinates of the information bar rectangle. If
there is no information bar in the specified window, the coordinates of the RECT data
structure pointed to by tnfoRectPtrwill all be 0. The coordinate system will be local
to the window's frame ; that is, 0,0 will be the upper left corner of the window. The
coordinates can be used to set the position of objects that will be drawn in the
information bar.

Stack before call

prevtous contents

infoRectPtr Long-POINTER to destination RECT where rectangle will be stored

theWindowPtr Long-POINTER to window's GrafFort

~ SP

Stack after call

previous contents I
--------~ SP

Errors

C

None

extern pasca l void GetRecti n fo (i n f oRe ctPtr , theWindowPtr)

Rect *infoRectPtr ;

GrafPortPtr theWindowPt r ;

Window Manager routines 25-63

$440E

Parameters

GetScroll
Returns the number of pixels by which TaskMaster will scroll the content region when
the user selects the arrows on window frame scroll bars.

Stack before call

prevtous contents

longspace

-- theWindowPtr

Stack after call

prevtous contents

scrol!Amount

Errors None

Long- Space for result

Long-POINTER to window's Grafport

<-SP

Long- Low word = vertical amount; high word = horizontal amount

<-SP

C extern pascal Longword GetScroll(theWindowPtr)

GrafPortPtr theWindowPtr ;

25-64 Window Manager routines

$2EOE GetStructRgn
Returns a handle to a specified window's structure region. See the section "Window
Regions" in this chapter for a definition of the structure region.

Parameters

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

-- wStructHandle

Errors None

Long-Space for result

Long-POINTER to window's GrafPort

f-SP

Long-HANDLE to window's structure region

f-SP

C e xtern pascal RgnHa ndle GetStructRgn(theWindowPtr)

GrafPortPtr theWindowPtr;

Window Manager routines 25-65

$4COE GetSysWFlag
Indicates whether a specified window is a system window or an application window.

Parameters

Stack before call

previous contents

wordspace

theWindowPtr

Stack after call

previous contents

sysFlag

Errors None

Word-Space for result

Long-POINTER to window's GrafPort

f-SP

Word-BOOLEAN; TRUE if system window, FALSE if application window

f-SP

C extern pascal Boolean GetSysWFlag(theWindowPtr)

GrafPortPtr theWindowPtr;

25-66 Window Manager routines

$300E GetUpdateRgn
Returns a handle to a specified window's update region. See the section
"Begin Update" in this chapter for an explanation of how the update region is used.

Parameters

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

-- wUpdateHandle

Errors None

Long-Space for result

Long- POINTER to window's GrafPort

~ SP

Lon g- HANDLE to window's update region

~ SP

C extern pascal RgnHandle GetUpdat e Rgn (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-67

$330E

Parameters

GetWControls
Returns the handle to the first control in the window's control list. The window's
control list is the list of controls created by the application with calls to NewControl in
the Control Manager.

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

-- contra/Handle

Errors None

Long-Space for result

Long- POINTER to window's GrafPort

f-SP

Long-HANDLE to first control in window's control list; NIL if none

f-SP

C extern pascal CtlRecHndl Ge tWCo ntrols (theWindowPtr)

GrafPortPtr theWindowPtr ;

25-68 Window Manager routines

$2COE GetWFrame
Returns the bit flag that describes a specified window's frame type. See the discussion
of the wFrame field in the section "NewWindow" in this chapter for the definition of
the bits in the flag.

Parameters

Stack before call

previous contents

wordspace

theWindowPtr

Stack after call

previous contents

Word-Space for result

Long-POINTER to window's GrafPort

wFrame Word-Bit flag with window's frame type

~SP

Errors None

C extern pascal Word GetWFrame(theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-69

$2BOE GetWKind
Indicates whether a specified window is a system window or an application window.

Parameters

Stack before call

previous contents

wordspace

theWindowPtr

Stack after call

previous contents

windowKind

Errors None

Word-Space for result

Long-POINTER to window's GrafPort

f-SP

Word-Bit 15 is O for application window, 1 for system window

f-SP

C e xtern pascal Word GetWKind(theWindowPtr)

GrafPort Ptr theWindowPtr ;

25-70 Window Manager routines

$200E GetWMgrPort
Returns a pointer to the Window Manager's port.

Parameters

Stack before call

previous contents

longspace

Stack after call

Long-Space for result

~SP

previous contents

wPortPtr

Errors

C

None

Long-POINTER to Window Manager's GrafFort

~SP

extern pascal GrafPortPtr Get WMgrPort ()

Window Manager routines 25-71

$290E

Parameters

GetWRefCon
Returns a value from a specified window's record that was passed to either NewWindow
or SetWRefCon by the application. The wRejCon field is reserved for use by the
application.

Stack before call

previous contents

longspace Long-Space for result

theWindowPtr Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents

Errors

C

25-72

wRejCon

None

Long-Current value of wRefCon field

~SP

extern pascal Longword GetWRefCon(theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Ma nager routines

$0EOE GetWTitle
Returns the pointer to a specified window's title. The string pointed to by titlePtr is a
Pascal-type string.

Parameters

Stack before call

previous contents

longspace

theWindowPtr

Stack after call

previous contents

titlePtr

Errors None

Long-Space for result

Long-POINTER to window's GrafFort

<-SP

Long-POINTER to window's title string

<-SP

C e xtern pascal Pointer Get WTit le (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-73

$370E

Parameters

GetZoomRect
Returns a pointer to the rectangle to be used as the content's zoomed or unzoomed
size for a specified window. If the zoom flag is set in the frame flag (see the section
"GetWFrame" in this chapter), then wZoomSizePtr points to a RECT data structure
that contains the window's last size and position. Otherwise, wZoomSizePtr points to
a RECT data structure that contains the size and position of the window's content
region (port) the next time the window is zoomed by a call to Zoom Window.

Stack before call

previous contents

longspace

-- theWindowPtr

Stack after call

previous contents

-- wzoomSizePtr

Errors None

Long-Space for result

Long-POINTER to window's GrafPort

f-SP

Long-POINTER to RECT data structure used as content's zoomed size

f-SP

C extern pascal Rect * GetZoomRect (theWindowPtr)

GrafPortPtr theWindowPtr ;

25-74 Window Manager routines

$1BOE GrowWindow
Pulls around a grow image of a specified window, following the movements of the
mouse until the mouse button is released. The grow image for a document window is
a dotted outline of the entire window plus the lines delimiting the title bar, size box,
and scroll bar areas. See Figure 25-18.

When there's a mouse-down event in the size box region of the specified window, the
application should call GrowWindow with startY and startX equal to the point where
the mouse button was pressed (in global coordinates, as stored in the where field of
the event record).

Parameters

Stack before call

previous contents

-- longspace --·

minWidth

minHeight

startX

startY

-- theWindowPtr --·

Stack after call

previous contents

newSize

Errors None

Long-Space for result

Word-Minimum width of content region

Word-Minimum height of content region

Word-Starting X coordinate of cursor, in global coordinates

Word-Starting Y coordinate of cursor, in global coordinates

Long-POINTER to window's GrafPort

f-SP

Long-High word = new width; low word = new height

f-SP

Window Manager routines 25-75

C extern pascal Longword GrowWindow (minWidth ,minHeight , startX , startY,

theWindowPtr)

Word minWidth ;

Word minHeight ;

Integer startX ;

Integer startY ;

GrafPortPtr theWindowPtr ;

You can also use the following alternate form of the call:

extern pascal Longword GrowWindow (minWidth , minHeight,start , theWindowPtr)

Word

Word

Point

minWidth;

minHeight ;

start ;

GrafPortPtr theWindowPtr ;

Grow image
Figure 25-18 illustrates the grow image for a document window that contains both
scroll bars. In general, the grow image is defined in the window definition function
to appropriately show that the window's size will change.

-D Title 0

0 ,__

-
~

~

0
101 I I 10 l2J

Width returned in high-order word

Figure 25-18
Grow image of a window

25-76 Window Manager routines

Height returned in
low-order word

Your application should subsequently call the SizeWindow routine to change the port
rectangle of the window's GrafPort to the new one outlined by the grow image. The
sizeRect parameter specifies limits, in pixels, on the height (vertical measurement)
and width (horizontal measurement) of what will be the new port rectangle. The top
coordinate of sizeRect is the minimum vertical measurement, the left coordinate is
the minimum horizontal measurement, the bottom coordinate is the maximum
vertical measurement, and the right coordinate is the maximum horizontal
measurement.

GrowWindow returns the actual size for the new port rectangle as outlined by the grow
image when the mouse button is released. The high-order word of the long is the
horizontal measurement in pixels; the low-order word is the vertical measurement.
A return value of O indicates that the size is the same as that of the current port
rectangle.

Window Manager routines 25-77

$120E

Parameters

HideWindow
Makes a specified window invisible. If the window is the frontmost window and there's
a window behind it, Hide Window also unhighlights the window, brings the window
behind it to the front, highlights that window, and generates appropriate activate
events. If the specified window is already invisible, Hide Window has no effect.

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
----- --- f- SP

Errors None

C e xtern pascal void HideWindow(theWind owPtr)

GrafPortPtr theWindowPtr ;

25-78 Window Manager routines

$220E

Parameters

HiliteWindow
Highlights or unhighlights a specified window, depending on the value of a specified
parameter. If JHtliteFlag is TRUE, this routine highlights the window. If fHiliteFlag is
FALSE, HiliteWindow unhighlights the window. The exact way a window is highlighted
and unhighlighted depends on its window definition procedure.

Normally you won't have to call this routine because you should call SelectWindow to
make a window active and SelectWindow takes care of the necessary highlighting
changes. To conform with the Apple Human Interface Guidelines, don't highlight a
window that isn't the active window.

Stack before call

previous contents

jHtliteFlag

theWindowPtr

Word-BOOLEAN; TRUE to highlight window, FALSE to unhighlight

Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C e xtern pascal void HiliteWindow(fH i liteFl ag, t heWindowPtr)

Boolean fHiliteFla g ;

Gr a fPortPtr theWi ndowPtr ;

Window Manager routines 25-79

$3AOE

Parameters

lnvalRect
Accumulates a specified rectangle into the update region of the window whose
GrafPort is the current port. This tells the Window Manager that the rectangle has
changed and must be updated. The rectangle is given in local coordinates and is then
clipped by the Window Manager to the window's content region.

Important
This routine changes the coordinates you give it. Save the coordinates if you
need to restore them later.

Stack before call

previous contents

badRectPtr Long-POINTER to RECT data structure of rectangle to be added

f-SP

Stack after call

previous contents I
- ------- f- SP

Errors

C

25-80

None

extern pascal void InvalRect (badRectPtr)

Rect *b a dRectPtr ;

Window Manager routines

$3BOE

Parameters

lnvalRgn
Accumulates a specified region into the update region of the window whose GrafPort is
the current port. This tells the Window Manager that the region has changed and
must be updated. The region is given in local coordinates and is then clipped by the
Window Manager to the window's content region.

Important
This routine changes the coordinates you give it. Save the c oord inates if you
need to restore them later.

Stack before call

previous contents

- - badRgnHandle Long-HANDLE to region to be added to update region

f-SP

Stack after call

previous contents I
------ --f-SP

Errors None

C extern pascal void InvalRgn (bad Rgn Handl e)

RgnHandle badRgnHandle ;

Window Manager routines 25-8 1

$190E

Parameters

MoveWindow
Moves a specified window to another part of the screen without affecting the window's
size. The upper left corner of the window's port rectangle is moved to the screen
point newY, newX. The local coordinates of the window's top left corner remain the
same.

Staclc before call

previous contents

newX

newY

Word-New X coordinate of content region's upper left corner (global)

Word-New Y coordinate of content region's upper left corner (global)

-- theWindowPtr --· Long-POINTER to window's GrafFort

~SP

Staclc after call

previous contents I
--------~SP

Errors None

C extern pascal void MoveWindow(newX,newY , theWindowPtr)

Integer newX;

Integer newY;

GrafPortPtr theWindowPtr;

You can also use the following alternate form of the call:

extern pascal void MoveWindow (newPoint , theWindowPtr)

Point newPoint;

GrafPortPtr theWindowPtr;

25-82 Window Manager routines

$090E

Parameters

NewWindow
Creates a specified window as specified by its parameters, adds it to the window list,
and returns a pointer to the new window's GrafPort. NewWindow allocates space for
the structure and content regions of the window and asks the window definition
function to calculate those regions.

Important
NewWlndow does not set the current port, but many routines require that a
current port exist. Use the QulckDraw II routine SetPort to set the current port.

Stack before call

previous contents

longspace

paramlistPtr

Stack after call

previous contents

Errors

theWtndow

$0E01

$0E02

Long-Space for result

Long-POINTER to parameter list (see Table 25-9)

~SP

Long-POINTER to window's GrafPort; N1L if error

~SP

paramLenErr

allocateErr

First word of parameter list is the wrong size

Unable to allocate memory for window record

C extern pascal GrafPortPtr NewWindow(paramListPtr)

ParamListPtr paramListPtr;

(continued)

Window Manager routines 25-83

NewWindow parameter list
The NewWindow parameter list is shown, and each parameter is briefly described, in
Table 25-9.

Table 25-9
NewWindow parameter list

Parameter Length

paramLength Word

wFrameBits Word
wTitle Long
wRefCon Long
wZoom 4 words
wColor Long
wYOrigin Word
wXOrigin Word
wDataH Word
wDataW Word
wMaxH Word
wMaxW Word
wScrollVer Word
wScrollHor Word
wPageVer Word
wPageHor Word
wlnfoRefCon Long
wlnfoHeight Word
wFrameDejProc Long
wlnf oDejProc Long
wContDejProc Long
wPosition 4 words
wPlane Long
wStorage Long

Description

Total number of bytes in parameter table, including the paramLength
parameter itself
Bit flag that describes window frame type
Pointer to window's title
Reserved for application use
RECT specifying size and position of content when zoomed
Pointer to window's color table
Vertical offset of content region from data area
Horizontal offset of content region from data area
Height of entire document
Width of entire document
Maximum height of content allowed by GrowWindow
Maximum width of content allowed by GrowWindow
Number of pixels to scroll content vertically when user clicks arrow
Number of pixels to scroll content horizontally when user clicks arrow
Number of pixels to scroll content vertically for page
Number of pixels to scroll content horizontally for page
Value passed to draw information bar routine
Height of information bar
Pointer to window definition procedure; NIL for standard
Pointer to routine that draws the interior of the information bar
Pointer to routine that draws the interior of the content region
RECT specifying window's starting position and size
Window's starting plane
Pointer to memory to use for window record

Each of these parameters is described in more detail in the following paragraphs.

paramLength: Total number of bytes in parameter table, including the
paramLength parameter itself. Use labels in code to calculate the values, which are
used mainly for error checking. Most errors with NewWindow occur because of
typing errors occurring when the parameter list is being created. The problem can
be compounded if the assembler or compiler skips fields because of the typing errors
but does not generate an error.

wFrameBits: Window frame type, as shown in Figure 25-19 (each bit flag is
described in more detail after the illustration).

25-84 Window Manager routines

l1 sl1 4l 13l12 l111101 9 I a I 7 I 61 s I 4131 2 I Io I
fTitle J J

Title bar= 1
No title bar = 0

fC/ose
Close box= 1

No c lose box = 0

fAlert -
Alert-type frame (no size and close boxes,

no info, title, or scroll bars)= 1

At the time of publication,
these fields should
be 11 1 or CXXJ;
see text describing
fGrow.

No a lert-type frame = 0

fRScro/1 -
Vertical scroll bar= 1

No vertical scroll bar = 0

fBScro /1 -
Horizontal scroll bar = 1

No horizontal scroll bar = O

fGrow ­
Size box= 1

No size box = 0

fF/ex -
GrowWindow and ZoomWindow don't change origin = 1

Origin c hanges = 0

Figure 25-19

floom
Zoom box on title bar = 1

No zoom box = 0

fMove -
Title bar is a drag region = 1

No drag region = 0

fQContent-
Activate window and return wlnContent = 1

Activate window and don't return wlnContent= 0

Ms -
Currently visible = 1

Window is invisible = O

flnfo -
Information bar = 1

No information bar = 0

fCt/Tie -
Control's state is independent of window's state = l

Control's state is the same as window's state = 0

fA l/ocoted ­
Record was allocated = 1

Record was provided by application = O

fZoomed ­
Currently zoomed = 1

Not zoomed = O

fHilited ­
Frame is highlighted = 1

Frame is not highlighted = 0

NewWindow window frame type (continued)

Window Manager routines 25-85

/Title: If this bit is set to 1, the window has a title bar as part of the window frame.

/Close: If this bit is set to 1, the window has a close box as part of the title bar. The
window must have a title bar to have a close box.

/Alert: If this flag is set to 1, it indicates to the Dialog Manager that it should draw an
alert window. The f!nfo, jZoom, jFlex, /Grow, jBScroll, jRScroll, /Close, and /Title
flags should all be set to 0.

jRScroll: If this bit is set to 1, the window has a right (vertical) scroll bar as part of the
window frame.

jBScroll: If this bit is set to 1, the window has a bottom (horizontal) scroll bar as part of
the window frame.

/Grow: If this bit is set to 1, the window has a size box as part of the window frame .

•:• Note: If /Grow is set to 1, jBScroll and jRScroll must also be set to 1; to have a
window frame size box, you must have at least one window frame scroll bar. The
fields should be either 111 or 000.

jFlex: If this bit is set to 1, the data height and width are flexible, which means that
GrowWindow and Zoom Window will not change the window's origin as needed.

jZoom: If this bit is set to 1, the window has a zoom box as part of the title bar. The
window must have a title bar to have a zoom box.

}Move: If this bit is cleared to 0, the window's title bar is not considered a drag region
and therefore the window cannot be moved.

JQContent: If this bit is set to 1 and there is a button-down event inside an inactive
window's content, the window will be selected and a winContent message will be
returned by TaskMaster. This feature is useful if you would like to act on any button
down in the content, even if it was also used to activate the window.

/Vis: If this bit is set to 1, the window is visible.

f!nfo: If this bit is set to 1, wlnfoHeight and wlnjoDejProc should be given values.

JCtrlTie: When the window is inactive (unhighlighted), its controls are also considered
inactive without regard for the active state of the control. Whenever an activate event
is received for the window, you should redraw all of the controls for the window to
make sure the controls appear in their proper states.

/Allocated· If this flag is set when Close Window is called, the window record will be
freed. Normally you never have to set or read this flag.

jZoomed: This flag is not used if jZoom is 0.

fHilited: This flag will be set by NewWindow, so whatever value you provide will be
ignored .

25-86 Window Manager routines

wTitle: Pointer to window's title. If the window has no title bar, this value can be 0.
The first byte in the string should be the length of the string followed by the ASCII
characters of the title. The title string should always include a space as the first and last
character of the string.

wRefCon: Application-defined reference value. This value is reserved for
application use and can be any value.

wzoom: RECT data structure specifying size and position of the content region when
the window is zoomed. If the bottom side of the rectangle is 0, a default RECT will be
used. The default is set so the window uses the entire screen.

wColor: Pointer to window's color table. This is the color table used to draw the
window's frame. NIL uses the default color table.

wYOrlgin: Vertical offset of content region from data area. This value is the vertical
value passed to SetOrigin when TaskMaster is used to draw inside the content region. It
is also used to compute the right (or vertical) scroll bar. Set wYOrigin to O if you are
not using window frame scroll bars.

wXOrlgin: Horizontal offset of content region from data area. This value is the
horizontal value passed to SetOrgin when TaskMaster is used to draw inside the content
region. It is also used to compute the bottom (or horizontal) scroll bar. Set wXOrigin
to O if you are not using window frame scroll bars.

wDataH: Height of entire data area. Used to compute the right scroll bar. Set it to 0
if you are not using window frame scroll bars.

wDataW: Width of entire data area. Used to compute the bottom scroll bar. Set it to
0 if you are not using window frame scroll bars.

wMaxH: Maximum content height allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to 0, a default value will be
used so the window will take up the height of the desktop. Set wMa:xHto O if your
window frame does not have a size box.

wMaxW.· Maximum content width allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to 0, a default value will be
used so the window will take up the width of the desktop. Set wMaxWto O if your
window frame does not have a size box.

wScrollVer: Number of pixels to scroll the content region when the up or down
arrows are selected in the right scroll bar. Used only if the scroll bar is part of the
frame and TaskMaster is used. Set wScrollVerto O if you are not using window frame
scroll bars.

wScrollHor: Number of pixels to scroll the content region when the left or right
arrows are selected in the bottom scroll bar. Used only if the scroll bar is part of the
frame and TaskMaster is used. Set wScrollHorto O if you are not using window frame
scroll bars .

Window Manager routines

(continued)

25-87

wPageVer: Number of pixels to scroll the content region when the up or down page
regions are selected in the right scroll bar. Used only if the scroll bar is part of the
frame and Task.Master is used. Set wPageVerto O for the default value of the content
region's current height minus 10.

wPageHor: Number of pixels to scroll the content region when the left or right page
regions are selected in the bottom scroll bar. Used only if the scroll bar is part of the
frame and Task.Master is used. Set wPageHor to O for the default value of the content
region's current width minus 10.

wltifoRefCon: Value passed to draw information bar routine. The value can be
anything the application would like, such as a pointer to a string to be printed in the
information bar. Set wlnjoRejCon to O if you are not using an information bar.

wltifoHeight: Height of the information bar if jlnfo (bit 4) of wFrame is set to 1.

wFrameDefProc: Pointer to window's definition procedure; NIL for a standard
document window.

wltifoDefProc: Pointer to routine that will be called to draw in the information bar.
Set it to O if you are not using window frame information bar.

wContDefProc: Pointer to routine that will be called to draw the window's content
region. If you are using window frame scroll bars, this value must be set.

If you are not using window frame scroll bars and want to handle update events
yourself, set this value to NIL.

If you are not using window frame scroll bars, but you would like Task.Master to handle
update events, set this value. The routine will be called when the content region needs
to be drawn. On entry, the current port will be the window's GrafPort, the visible
region will be set to the update area, and the origin set. There are no input or output
parameters. Exit the routine via RTL.

wPosition: A RECT data structure specifying the window's starting position and size
in global coordinates. The RECT becomes the port rectangle of the window's
GrafPort; note, however, that the port rectangle is in local coordinates. NewWindow
sets the top left corner of the port rectangle to (0,0). For the standard types of
windows, this RECT data structure defines the content region of the window.

wPlane: Pointer to window's starting plane; that is, to the window's GrafPort behind
which this window should appear-0 for bottommost, $FFFFFFFF for topmost.

wStorage: Pointer to memory to use for window's record. If set to NIL, memory for
the record will be allocated by the Window Manager. Because window records are not
completely defined, the size needed for one is unknown and you must allow at least 325
bytes for a window record. It is usually best to have the record allocated by the
Window Manager. The ability to use your own memory for a window record is
provided in case you need to put up a window informing the user that there is no more
memory.

25-88 Window Manager routines

$210E

Parameters

PinRect
Pins a specified point inside a specified rectangle. If the point is inside the rectangle,
the point is returned; otherwise, the point associated with the nearest pixel within the
rectangle is returned. (The high-order word of the pinned point is the X coordinate;
the low-order word is the Y coordinate.)

More precisely, for a specified rectangle (lejt,top, right, bottom) and a specified
point (h,v), PinRect does the following:

• If h < left, it returns left.

• If v < top, it returns top.

• If h > right, it returns right -1.

• If v > bottom, it returns bottom -1.

•!• Note: The 1 is subtracted when the specified point is below or to the right of the
specified rectangle so that a pixel drawn at that point will lie within theRect.

Stack before call

previous contents

-- longs pace

theXPt

theYPt

-- theRectPtr

Stack after call

previous contents

pinnedPt

--·

- - ·

Long-Space for result

Word-X coordinate of point to be pinned

Word-Y coordinate of point to be pinned

Long-POINTER to RECT data structure defining boundary of point

~SP

Long-POINT; high word = X coordinate, low word = Y coordinate

~SP

Window Manager routines 25-89

Errors

C

25-90

None

extern pascal Long PinRect(theXPt,theYPt,theRectPtr)

Integer theXPt ;

Integer theYPt ;

RectPointer theRectPtr ;

You can also use the following alternate form of the call:

extern pascal Long PinRect(thePoint,theRectPtr)

Point thePoint;

RectPointer theRectPtr;

•:• Note: C Pascal-type functions do not deal properly with data structures returned
on the stack. The Long result returned by this call can be passed to any calls
requiring a point as a parameter. You cannot use the C dot operator to access the
individual Y and X coordinates within the value returned by this call.

Window Manager routines

$390E

Parameters

Refresh Desktop
Redraws the entire desktop and all the windows. This routine can be useful when the
entire screen is clobbered by some application-specific, non-Window Manager
operation.

Stack before call

previous contents

redrawRect Long-POINTER to RECT of rectangle to redraw; NIL for entire screen

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void RefreshDesktop (redrawRect)

Rect *redrawRect;

Window Manager routines 25-91

$1 lOE

Parameters

SelectWindow
Makes a specified window the active window. This routine unhighlights the previously
active window, brings the specified window in front of all other windows, highlights it,
and generates appropriate activate events. Call this routine if you are not using
TaskMaster and there's a mouse-down event in the content region of an inactive
window.

Stack before call

previous contents

- - theWindowPtr Long-POINTER to window's GrafFort

f-- SP

Stack after call

previous contents I
-------- f-- SP

Errors None

C e xtern pascal void SelectWindow(theWindowPtr)

GrafPortPtr theWindowPtr ;

25-92 Window Manager routines

$140E

Parameters

SendBehind
Changes the position of a specified window, redrawing any exposed windows.

If behindWindowPtr is -2 ($FFFFFFFE), it sends the specified window behind all other
windows. If behindWindowPtr is -1 ($FFFFFFFF), it puts the specified window in front
of all other windows. If the specified window is the active window, the routine
unhighlights the active window, highlights the new active window, and generates the
appropriate activate events.

Stack before call

previous contents

--behindWindowPtr Long-POI TER to GrafFort or $FFFFFFFF = top or $FFFFFFFE = bottom

-- theWindowPtr Long- POINTER to window's GrafFort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SendBehind (behindWindowPtr , theWindowPtr)

GrafPortPtr

GrafPortPtr

behindWindowPt r;

theWindowPtr ;

Window Manager routines 25-93

$490E

Parameters

SetContentDraw
Sets the pointer to the routine to draw the content region of a specified window.

TaskMaster calls this routine when it gets an update event for that window. See the
section "Draw Content Routine" in this chapter for more infomation about the draw
routine.

Stack before call

previous contents

contentProcPtr Long-POINTER to routine to draw content region

-- theWindowPtr Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetContentDraw(contentDrawPtr,theWindowPtr)

25-94

VoidProcPtr

GrafPortPtr

contentDrawPtr ;

theWindowPtr ;

Window Manager routines

$3FOE SetContentOrigin
Sets the origin of the window's Grafl>ort when handling an update event. The values
are used by TaskMaster to set the origin of the window's Grafl>ort and are also used by
the Window Manager to compute scroll bars in the window frame. See the section
"Origin Movement" in this chapter for an illustration of the origin values.

Setting the origin values generates an update event.

Parameters

Stack before call

previous contents

xOrigtn

yOrigin

Word-Content region's horizontal offset into data area

Word-Content region's vertical offset into data area

- - theWindowPtr - - · Long-POINTER to window's Grafl>ort

~SP

Stack after call

previous contents I
- ------- ~SP

Errors None

C ext ern pascal void SetCont e ntOrig i n(xOrigin,yOrigin , theWindowPtr)

Word xOrig in ;

Word yOrigin;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-95

$570E

Parameters

SetContentOrigin2
Sets the origin of the window's Grafflort when handling an update event and allows the
application to scroll or not scroll the window's content region. If scrollFlag is set to
1, this call is the same as SetContentOrigin. If scrollFlag is set to 0, the window's
origin will be set without the Window Manager scrolling the data in the window. This
feature is useful, for example, if a window's data area has to be expanded to the left or
above the current origin and you don't want your application to redraw everything in
the window.

The xOrigtn and y()rigin values are used by TaskMaster to set the origin of the
window's Grafflort and are also used by the Window Manager to compute scroll bars
in the window frame. See the section "Origin Movement" in this chapter for an
illustration of the origin values.

Setting the origin values generates an update event.

Stack before call

previous contents

scrollFlag

xOrigin

yOrigin

Word-0 to not scroll content, 1 to scroll content

Word-Content region's horizontal offset into data area

Word-Content region's vertical offset into data area

-- theWindowPtr --· Long- POINTER to window's Grafflort

f- SP

Stack after call

prevtous contents I
-------- f- SP

Errors

C

25-96

None

extern pascal void SetContentOrigin2 (scrollFlag,xOrigin , y0rigin ,

theWindowPtr)

Word scrollFlag ;

Word xOrigin ;

Word yOrigin ;

GrafPort Ptr theWind owPtr ;

Window Manager routines

$410E SetDataSize
Sets the height and width of the data area of a specified window. Setting these values
will not change the scroll bars or generate update events.

Parameters

Stack before call

previous contents

data Width

dataHeight

Word-Width of data area in pixels

Word-Height of data area in pixels

-- theWindowPtr --· Long-POINTER to window's Grafport

f-SP

Stack after call

previous contents I
--------f-SP

Errors None

C extern p a scal v oid SetDa t aS i ze(dataWidth,dataHeight , theWi ndowPtr)

Word dataWi dth ;

Word dataHeight ;

GrafPortPtr t he Wind owPt r;

Window Manager routines 25-97

$320E

Parameters

SetDefProc
Sets the pointer to the routine that defines a window's frame and behavior. See the
section "Defining Your Own Windows" in this chapter for an explanation of what a
definition procedure does.

Stack before call

previous contents

wDejProcPtr Long-POINTER to window's definition procedure

-- theWindowPtr Long-POINTER to window's GrafFort

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetDefProc (wDefProcPtr , t heWindowPtr)

25-98

LongProcPtr

GrafPort Ptr

wDefProcPtr ;

t heWin d owPtr ;

Window Manager routines

$0FOE

Parameters

SetframeColor
Sets the color of a specified window's frame . Does not redraw the window. Do a
HideWindow call before the SetFrameColor call and a ShowWindowcall after the
SetFrameColor call to redraw the window in its new colors.

The interaction between the newColorPtr and theWindowPtr parameters is shown in
Figure 25-20. See the section "Window Frame Colors and Patterns" in this chapter for
a definition of the color table.

Stack before call

previous contents

newColorPtr Long-POINTER to five-word pattern/color table; NIL for default table

-- theWindowPtr Long-POINTER to window's GrafFort; NIL for window default

Stack after call

previous contents I
- ------- f- SP

Errors None

C extern pascal void SetFrameColor (newColorPtr , theWindowPtr)

WindColorPtr

GrafPortPtr

newColorPtr ;

theWindowPtr ;

Window Manager routines

(continued)

25-99

The newColorPtr and theWindowPtr parameters

The precise results of the four possible combinations of the newColorPtr and
theWindowPtr parameters are shown in Figure 25-20.

1 SetFrameColor parameters 1
I newColorPfr theWindowPtr I Result

I Pointer I I Pointer I

I Pointer I 0

0 I Pointer I

Figure 25-20

Changes a specified window
to a specified color table

Makes a specified color table
the default table for
all future windows

Changes the specified window
to the Window Manager' s
startup color table

Replaces the default color table
for all future windows with the
Window Manager's startup
color table

SetFrameColor newColorPtr and theWindowPtr values

25-100 Window Manager routines

$160E SetlnfoDraw
Sets the pointer to a routine that draws the information bar for a specified window. If
the window has an information bar, the standard window definition procedure calls
this routine whenever the window's frame needs to be drawn. See the section "Draw
Information Bar Routine" in this chapter for more information about the draw
routine .

Parameters

Stack before call

previous contents

infoDrawPtr Long-POINTER to draw information bar routine

-- theWindowPtr Long-POINTER to window's Gra£Port

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void Set i nfoDraw (infoDrawPtr , theWindowPtr)

VoidProcPtr

GrafPortPtr

infoDrawPtr ;

theWindowPtr ;

Window Manager routines 25-101

$360E

Parameters

SetlnfoRefCon
Sets the value associated with the draw information bar routine for a specified window.
That value is reserved for use by the applicaton.

Stack before call

previous contents

infoRefCon Long-Value to pass to draw information bar routine

-- theWindowPtr Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents · I
---------~SP

Errors None

C extern pascal void SetinfoRefCon(in foRefCon , theWindowPtr)

Longword infoRefCon ;

GrafPortPtr theWindowPtr ;

25- 102 Window Manager routines

$430E SetMaxGrow
Sets the maximum values to which a specified window's content region can grow.

Parameters

Stack before call

previous contents

maxWidth

maxHeight

Word-Maximum content width in pixels

Word-Maximum content height in pixels

-- theWindowPtr --· Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void SetMaxGrow (maxWidth , maxHeight , theWindowPtr)

Word maxWidth;

Word maxHeight;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-103

$340E

Parameters

SetOriginMask
Specifies the mask used to put the horizontal origin on a grid.

SetOriginMask is useful when you are using a scrollable window in 640 mode with
dithered colors. In that mode, pixels must keep the same horizontal position to
remain the same color. Scrolling windows can change the color by putting the pixels
in the wrong horizontal position. SetOriginMask prevents this problem by providing
an originMask that will be ANDed by Task.Master with any new horizontal origin to
force the origin to certain boundaries. The default is $FFFF, single pixel.

Stack before call

previous contents

originMask

theWindowPtr

Word-Mask used to place horizontal origin on a grid

Long-POINTER to window's GrafPort

f- SP

Stack after call

previous contents I
-------- f- SP

Errors None

C e xtern pascal void SetOriginMask (originMask , theWindowPtr)

Word originMask;

GrafPortPtr theWindowPtr ;

25-104 Window Manager routines

$470E SetPage
Sets the number of pixels by which TaskMaster will scroll the content region when the
user selects the page regions on window frame scroll bars.

Parameters

Stack before call

previous contents

hPage

vPage

Word-Number of pixels to page horizontally

Word-Number of pixels to page vertically

-- theWindowPtr --· Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C e xtern pascal void SetPage (hPage , vPage , theWindowPtr)

Word hPage ;

Word vPage ;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-1 05

$450E

Parameters

SetScroll
Sets the number of pixels by which TaskMaster will scroll the content region when the
user selects the arrows on window frame scroll bars.

Stack before call

previous contents

hScroll

vScroll

Word-Number of pixels to scroll horizontally

Word-Number of pixels to scroll vertically

-- theWindowPtr -- Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents I
-------- ~SP

Errors None

C extern pascal void SetScroll (hScroll , vScroll , theWindowPtr)

Word hScroll ;

Word vScroll ;

GrafPortPtr theWindowPtr ;

25- 106 Window Manager routines

$4BOE SetSysWindow
Marks a specified window as a system window.

Parameters

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafFort

f-SP

Stack after call

previous contents I
--------f- SP

Errors None

C extern pascal void SetSysWindow (theWindowPtr)

GrafPortPtr theWindowPtr ;

Window Manager routines 25-107

$2DOE

Parameters

SetWFrame
Sets the bit flag that describes a specified window's frame type. The window frame is
not redrawn. See the discussion of wFrameBits in the section "NewWindow" in this
chapter for the definition of the bits of the wFrame parameter.

•!• Note: Normally, you won't need to call this routine; instead, you should set up the
window frame correctly with the NewWindow routine. The SetWFrame routine is
provided for custom window definition procedures.

Stack before call

previous contents

wFrame

theWindowPtr

Word-Bit flag specifying window's frame type

Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C e xt ern pascal void SetWFrame(wFrame , theWindowPtr)

Word wFrame ;

Gr a fPortPtr theWi ndowPtr ;

25-108 Window Manager routines

$4EOE SetWindowlcons
Sets the icon font for the Window Manager. See the section "Window Manager Icon
Font" in this chapter for more information about the font.

If you want to use the call to simply retrieve the handle of the current font, specify a
negative value for newFontHandle.

Parameters

Stack before call

previous contents

longspace

-- newFontHandle --

Stack after call

previous contents

-- oldFontHandle

Errors None

Long-Space for result

Long-HANDLE to new icon font; negative to not replace font

~SP

Long-HANDLE to icon font before call

~SP

C extern pascal FontHndl SetWindowicons (newFontHandle)

FontHndl newFontHandle ;

Window Manager routines 25-109

$280E

Parameters

SetWRefCon
Sets a value that is inside a specified window record and is reserved for the
application's use.

Stack before call

previous contents

wRefCon Long-Value of wRefCon field

-- theWindowPtr Long-POINTER to window's Grafport

f-SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void SetWRefCon (wRefCon , theWindowPtr)

Long int wRefCon ;

GrafPortPtr theWindowPtr ;

25-110 Window Manager routines

$0DOE SetWTitle
Changes the title of a specified window to a specifed title and redraws the window. The
string pointed to by titlePtr must be a Pascal-type string.

Warning
The string pointed to by titlePtr must not be changed or moved.

Parameters

Stack before call

previous contents

titlePtr Long- POINTER to new title

theWindowPtr Long-POINTER to window's GrafPort

(-SP

Stack after call

previous contents I
-------- (- SP

Errors None

C e xtern pascal void SetWTitle (titlePtr , theWindowPtr)

Pointer titlePtr ;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-111

$380E

Parameters

SetZoom Rect
Sets the rectangle to be used as the content's zoomed or unzoomed size for a specified
window. If the window is currently in a zoomed state (that is, bit 2, the jZoomed bit,
is set to 1 in the wFrame flag-see the section "NewWindow" in this chapter),
wZoomSizePtr should point to a RECT data structure that specifies the window's
unzoomed size and position.

If the window is currently in an unzoomed state (that is, the jZoomed bit is set to 0),
wZoomSizePtr should point to a RECT data structure that specifies the zoomed size
and position of the window. The rectangle will be used as the window's content region
(port) the next time the window is zoomed by a call to Zoom Window.

Stack before call

previous contents

wZoomSizePtr Long-POINTER to rectangle to be used as content's zoomed size

-- theWindowPtr Long-POINTER to window's GrafFort

~SP

Stack after call

previous contents I
-------- ~SP

Errors

C

25- 11 2

None

e xtern pascal void SetZoomRect(wZoomSizePtr , theWindowPtr)

Rect *wZoomSiz e Ptr ;

Gra f PortPtr theWindowPtr ;

Window Manager routines

$230E

Parameters

ShowHide
Shows or hides a window. If showFlag is TRUE, ShowHide makes the specified
window visible if it's not already visible and has no effect if it is already visible. If
showFlag is FALSE, ShowHide makes the window invisible if it's not already invisible
and has no effect if it is already invisible.

Unlike HideWindow and ShowWindow, ShowHide never generates activate events or
changes the highlighting or front-to-back ordering of windows.

Important
Use this procedure carefully and only In speclal circumstances In which you
need more control than Is allowed by ShowWindow and HideWindow. You
could end up with an active window that Isn't highlighted.

Stack before call

previous contents

showFlag

theWindowPtr

Word-BOOLEANi TRUE to show, FALSE to hide

Long-POINTER to window's GrafFort

f-SP

Stack after call

previous contents I
----- - - - - f- SP

Errors None

C extern pascal void ShowHide (showF l ag, theWindowPtr)

Boolean showFlag ;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-113

$130E

Parameters

ShowWindow
Makes a specified window visible if it was invisible and then draws the window. It does
not change the front-to-back ordering of the windows. If you have previously hidden
the frontmost window with Hide Window, Hide Window will have brought the window
behind it to the front. If you then do a ShowWindow of the window you hid, it will no
longer be frontmost.

If the specified window is already visible, ShowWindow has no effect.

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
--------- f-- SP

Errors None

C e xte r n pascal void ShowWindow (theWindowPt r)

Gr afPortPtr theWindowPtr ;

25-114 Window Manager routines

$1COE Size Window
Enlarges or shrinks the port rectangle of the specified window's GrafPort to a specified
width and height. If the new width and height are specified as 0, Size Window does
nothing. The window's position on the screen does not change. When the new
window frame is drawn, if the width of a document window changes, the title is
recentered in the title bar, or if it no longer fits, it is truncated.

Parameters

Stack before call

previous contents

newWidth

newHeight

Word-New width of window in pixels

Word-New height of window in pixels

-- theWindowPtr --· Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
-------- ~SP

Errors None

C extern pascal void SizeWindow (newWidth , newHeight , theWindowPtr)

Word newWidth ;

Word newHeight;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-11 5

$4DOE

Parameters

Start Drawing
Makes a specified window the current port and sets its origin. After the call, any
drawing occurs inside the specified window's content area and in the proper
coordinate sys tem.

Important
Do not ca ll StartDrawing between a BeginUpdate and an EndUpdate call. Also,
when you have finished drawing, call the QuickDraw II routine SetOrigin(O,O).

StartDrawing can be used for drawing in a window's content region outside of update
events .

•:• Note: StartDrawing is useful only with standard document windows with frame
scroll bars. Otherwise, only a SetPort call is needed to make the correct port
current.

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafFort

f-- SP

Stack after call

previous contents I
-------- f-- SP

Errors None

C extern pascal void StartDrawing(theWindowPtr)

GrafPortPtr theWindowPtr ;

25-116 Window Manager routines

$500E

Parameters

StartlnfoDrawing
Allows an application to draw or hit test outside of its information bar definition
procedure. If there is no information in the window, the coordinates of the RECT
data structure pointed to by infoRectPtrwill all be 0. The coordinate system will be
local to the window's frame; that is, 0,0 will be the upper left corner of the window,
and the current GrafFort will be the Window Manager's.

You can set the clip region after a StartinfoDrawing call and before an
EndlnfoDrawing call; this is not true from within the information bar definition
procedure .

Important
When you finish dealing with the information bar, you must call the
EndlnfoDrawing routine before you make any other calls to the Window
Manager.

Stack before call

previous contents

infoRectPtr Long-POINTER to RECT where information bar's data will be stored

-- theWindowPtr Long-POINTER to window's GrafPort

f-SP

Stack after call

previous contents I
--------- f- SP

Errors

C

None

extern pascal void StartinfoDrawing (infoRectPtr , theWindowPtr)

Rect *infoRectPtr ;

GrafPortPtr theWindowPtr ;

Window Manager routines 25-11 7

$1DOE Task Master
Calls GetNextEvent and looks in the event part of the task record to see if it can handle
the event. If no event is returned by GetNextEvent, 0 is returned in taskCode. For
further description of TaskMaster's activities, see the following section "TaskMaster
Pseudocode."

Parameters

Stack before call

previous contents

wordspace

taskMask

-- taskRecPtr

Stack after call

previous contents

taskCode

--·

Errors $0E03

Word-Space for result

Word-Mask used by TaskMaster to call GetNextEvent

Long- POINTER to Window Manager task record

~SP

Word-Code indicating action to be taken; 0 = no further task to perform

~SP

taskMaskErr Reserved bits not clear in wmTaskMask field of task
record

C extern pascal Word TaskMaster (taskMask , taskRecPtr)

Word taskMask ;

WmTaskRecPtr taskRecPtr ;

25-118 Window Manager routines

TaskMaster pseudocode
Task.Master can be a powerful tool, and can take care of much of the mundane
processing of events. Because the routine is so important, this section presents
pseudocode describing Task.Master's operations.

To perform its functions, Task.Master takes the following steps:

Calls the Desk Manager routine SystemTask.

Calls the Event Manager routine GetNextEvent with a TaskRec and eventMask.

The wmMessage field of TaskRec is duplicated into the wmTaskData field of
TaskRec.

If any of the reserved bits in the wmTaskMask field are not 0:
{

Low word of wmTaskData = 0.
Returns nullEvt ($0000).
Error returned: wmTaskMaskErr ($0E03).

If wmWhat field of TaskRec = nullEvt ($0000):
{

Low word of TaskData = 0.
Returns nullEvt ($0000).

If wmWhat field of TaskRec = updateEvt ($0006):
{

If wmTaskMask bit tmUpdate (bit 1) = 0:
{

wmTaskData = pointer to window to be updated.
Returns updateEvt ($0006).

If window's wContDejProc field = 0:
{

wmTaskData = pointer to window to be updated.
Returns upda teEvt ($0006).

Calls the BeginUpdate routine.

The window's draw routine in window's wContDejProc field is called
(routine in application).

Calls the EndUpdate routine.

wmTaskData low word= updateEvt ($0006).
Returns nullEvt ($0000).

(continued)

Window Manager routines 25-119

If wmWhatfield ofTaskRec = activateEvt ($0008):
{

If wmTaskMask bit tmCRedraw (bit 13) = 1:
{

If wframe bit JCt!Tie (bit 3) = 1:
{

Calls the Control Manager routine DrawControls to draw
controls in proper state.

wmTaskData = pointer to window that was activated or deactivated (check
modifier field) .
Returns activateEvt ($0008).

If wmWhat field of TaskRec = keyDownEvt ($0003) OR autoKeyEvt ($0005):
{

If wmTaskMask bit tmMenuKey (bit 0) = 0:
{

wm TaskData = message field as returned by GetNextEvent.
Returns keyDownEvt ($0003).

Calls the Menu Manager routine MenuKey with the given TaskRec for the
system menu bar.
Go to Menu Selection.
(The remainder of TaskMaster from this point is the same as when the Menu
Manager routine MenuSelect is called.)

If wmWhat field of TaskRec does not equal mouseDownEvt ($0001):
{

Returns what field from TaskRec.

25-120 Window Manager routines

If wmWhat field of TaskRec = mouseDownEvt($0001):
{

If TaskMask bit tmFindW(bit 2) = 0:
{

wmTaskData = message field from GetNextEvent.
Returns mouseDownEvt ($0001).

Calls FindWindow.

If FindWindow returns winMenuBar ($0011):
{

Menu Selection:

If TaskMask tmMenuSel (bit 3) = 0:
{

Low word of wmTaskData = 0.
Returns winMenuBar ($0011).

MenuSelect is called with TaskRec passed to TaskMaster.

If low word of wmTaskData = 0, then no selection made:
{

If wmTaskMask bit tmlnactive (bit 14) = 0:
{

Low word of wmTaskData = winMenuBar ($0011).
Returns nullEvt ($0000).

If high word of wmTaskData = nonzero:
{

Low word of wmTaskData = 0.
High word of wmTaskData = ID of selected inactive
menu item.
Returns winactMenu ($001C).

Low word of wmTaskData = winMenuBar ($0011).
Returns nullEvt ($0000).

(continued)

Window Manager routines 25-121

25- 122

Else, menu selection made:
{

If low word of wmTaskData (menu item ID) < 250:
{

If wmTaskMask bit tmOpenNDA (bit 4) = 0:
{

Low word of wmTaskData = ID of selected
menu item.
High word of wmTaskData = ID of menu
from which selection was made.
Returns winDeskrtem ($001A).

Calls the Desk Manager routine OpenNDA to open
the desk accessory selected.
Calls Menu Manager routine HiliteMenu to
unhighlight the selected menu.
Low word of wmTaskData = winDeskitem
($001A) .
Returns nullEvt ($0000).

}
If TaskMask bit tmSpecial (bit 12) = 0:
{

Low word of wmTaskData = ID of selected menu
item.
High word of wmTaskData = ID of menu from
which selection was made.
Returns winSpecial ($0019).

If top window is an application (nonsystem) window:
{

Low word of wmTaskData = ID of selected menu
item.
High word of wmTaskData = ID of menu from
which selection was made.
Returns winSpecial ($0019).

If low word of wmTaskData (menu item ID)= 255 (Close
item):
{

Calls Desk Manager routine CloseNDAbyWinPtr
for top window (system window).
Calls HiliteMenu to unhighlight the selected menu.
Low word of wmTaskData = wClosedNDA ($001D).
Returns nullEvt ($0000).

Window Manager routines

If low word of wmTaskData (menu item ID) = 250, 251, 252,
253, or 254 (edit item):
{

Calls Desk Manager routine SystemEdit with ID of
special edit menu item.
If SystemEdit returns FALSE:
{

Low word of wmTaskData = ID of selected
menu item.
High word of wmTaskData = ID of menu
from which selection was made.
Returns winSpecia l ($0019).

(Top system window handled the special menu item
selection.)
Calls the Menu Manager routine HiliteMenu to
unhighlight the selected menu.
Low word ofTaskData = wCalledSysEdit
($001E).
Returns nullEvt ($0000).

(Low word of wmTaskData (menu item ID) > 255.)
Low word of wmTaskData = ID of selected menu item.
High word of wmTaskData = ID of menu from which
selection was made.
Returns winMenuBar ($0011).

} (end menu selection)
(end FindWindow winMenuBar)

If FindWindow returns a negative value:
{

If wmTaskMask bit tmSysClick (bit 5) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns result from FindWindow.

Calls Desk Manager routine SystemClick with result from
FindWindow.
wmTaskData low word = wClickCalled ($0012).
Returns nullEvt ($0000).

(co ntinued)

Window Manager routines 25-123

25-124

If FindWindow returns winDrag ($0014):
{

If wmTaskMask bit tmDragW (bit 6) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winDrag ($0014).

If bit 8 in the modifier field of TaskRec (Apple key up) and the
window is not active:
{

Calls SelectWindow to make window active.

Calls DragWindow.
wmTaskData = winDrag ($0014) .
Returns nullEvt ($0000).

If FindWindow returns winContent ($0013):
{

If wmTaskMask bit tmContent (bit 7) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winContent ($0013).

If the window is not active:
{

Calls SelectWindow to make window active.
}

If wFrame field fQContent (bit 6) = 1:
{

wmTaskData = window pointer returned from FindWindow.
Returns winContent ($0013).

Low word of wmTaskData = winContent ($0013).
Returns nullEvt ($0000).

Window Manager routines

If FindWindow returns winGoAway ($0016):
{

If wmTaskMask bit tmClose (bit 8) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winGoAway ($0016).

Calls TrackGoAway.
If TrackGoAway returns TRUE:
{

}

wmTaskData = window pointer returned from FindWindow.
Returns winGoAway ($0016).

Low word of wmTaskData = winGoAway ($0016).
Returns nullEvt ($0000).

If FindWindow returns winZoom ($0017):
{

If wmTaskMask bit tmZoom (bit 9) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winZoom ($0017).

Calls TrackZoom.
If TrackZoom returns TRUE:
{

Calls ZoomWindow.
Low word of wmTaskData = winZoom ($0017).
Returns nullEvt ($0000).

Low word of wmTaskData = wTrackZoom ($001F).
Returns nullEvt ($0000).

If FindWindow returns winGrow ($0015):
{

If wmTaskMask bit tmGrow (bit 10) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winGrow ($0015).

Calls GrowWindow.
Calls Size Window with results from GrowWindow.
Low word of wmTaskData = winGrow ($0015).
Returns nullEvt ($0000).

(continued)

Window Manager routines 25-125

25-126

If FindWindow returns wininfo ($0018):
{

If wmTaskMask bit tmlnfo (bit 15) = 1:
{

If window is not active:
{

Calls SelectWindow.
Low word of wmTaskData = wininfo ($0018).
Returns nullEvt ($0000).

wmTaskData = window pointer returned from FindWindow.
Returns wininfo ($0018).

If FindWindow returns winFrame ($001B):
{

If wmTaskMask bit tmScroll (bit 11) = 0:
{

wm TaskData = window pointer returned from FindWindow.
Returns winFrame ($001B).

If window is not active:
{

Calls SelectWindow to make active.
Low word of wmTaskData = wHitFrame ($0020).
Returns nullEvt ($0000).

If button was on a window frame control:
{

Low word of wmTaskData = wHitFrame ($0020).
Returns nullEvt ($0000).

Calls TrackControl with an action procedure within TaskMaster.
The action procedure in TrackMaster performs scrolling and
updates .
Low word of wmTaskData = winFrame ($001B).
Returns nullEvt ($0000).

Else (something returned from FindWindow other than those handled
above):
{

wmTaskData = returned value from FindWindow.
Returns result from FindWindow.

Window Manager routines

$180E

Parameters

TrackGoAway
Tracks the mouse until the mouse button is released, highlighting the go-away region
as long as the mouse location remains inside it and unhighlighting it when the mouse
moves outside it.

When there's a mouse-down event in the go-away region of the specified window and
the application is not using TaskMaster, the application should call TrackGoAway with
startX and startY equal to the point where the mouse button was pressed (in global
coordinates, as stored in the where field of the event record) .

The exact way a window's go-away region is highlighted depends on its window
definition procedure. If the user releases the mouse button while the cursor is inside
the go-away region, TrackGoAway unhighlights the go-away region and returns TRUE
(following which the application should eventually perform a Close Window). If the
user releases the mouse button while the cursor is outside the go-away region,
TrackGoAway returns FALSE (in which case the application should do nothing).

Stack before call

previous contents

wordspace

startX

startY

-- theWindowPtr --·

Stack after call

previous contents

goAway

Errors None

Word-Space for result

Word-Starting X coordinate of cursor, in global coordinates

Word-Starting Y coordinate of cursor, in global coordinates

Long-POINTER to window's Grafport

f- SP

Word-BOOLEAN; TRUE if go-away selected when button released,

f- SP FALSE if not

Window Manager routines 25-127

C

25-128

extern pascal Boolean TrackGoAway(startX , startY, theWindowPtr)

Integer startX;

Integer startY;

GrafPortPtr theWindowPtr ;

You can also use the following alternate form of the call:

extern pascal Boolean TrackGoAway (start , theWindowPtr)

Point start ;

GrafPortPtr theWindowPtr ;

Window Manager routines

$260E TrackZoom
Tracks the mouse until the mouse button is released, highlighting the zoom region as
long as the mouse location remains inside it and unhighlighting it when the mouse
moves outside it.

When there's a mouse-down event in the zoom region of the specified window and the
application is not using TaskMaster, the application should call TrackZoom with
startXand startYequal to the point where the mouse button was pressed (in global
coordinates, as stored in the where field of the event record) .

The exact way a window's zoom region is highlighted depends on its window
definition procedure. If the mouse button is released inside the zoom region,
TrackZoom unhighlights the zoom region and returns 1RUE (following which the
application should eventually perform a Zoom Window). If the mouse button is
released outside the zoom region, TrackZoom returns FALSE (in which case the
application should do nothing).

Parameters

Stack before call

previous contents

wordspace

startX

startY

-- theWindowPtr

Stack after call

previous contents

zoom

--·

Word-Space for result

Word-Starting X coordinate of cursor, in global coordinates

Word-Starting Y coordinate of cursor, in global coordinates

Long-POINTER to window's GrafPort

f-SP

Word-BOOLEAN; TRUE if zoom region was selected, FALSE if not

f-SP

Window Manager routines 25-129

Errors

C

25-130

None

extern pascal Boolean TrackZoom (startX , startY , theWindowPtr)

Integer

Integer

startX ;

startY;

GrafPortPtr theWindowPtr ;

You can also use the following alternate form of the call:

extern pascal Boo l ean Track Zoom (start, t heWi ndowPtr)

Point start ;

GrafPortPtr theWindowPtr ;

Window Manager routines

$3COE

Parameters

ValidRect
Removes a specified rectangle from the update region of the window whose GrafPort is
the current port and tells the Window Manger to cancel any updates accumulated for
that rectangle. The rectangle is clipped to the window's content region and is given in
local coordinates.

Important

This routine changes the coordinates you give it. Save the coordinates if you
need to restore them later.

Stack before call

previous contents

goodRectPtr Long-POINTER to RECT specifying rectangle to be removed

f-SP

Stack after call

previous contents I
-------- f- SP

Errors

C

None

extern pascal void ValidRect(goodRectPtr)

Rect *goodRectPtr;

Window Manager routines 25-131

$3DOE

Parameters

ValidRgn
Removes a specified region from the update region of the window whose GrafPort is
the current port and tells the Window Manger to cancel any updates accumulated for
that region. The region is clipped to the window's content region and is given in local
coordinates .

Important
This routine changes the coordinates you give it. Save the coordinates if you
need to restore them later.

Stack before call

previous contents

-- goodRgnHandle Long-HANDLE to region to be subtracted from update region

f- SP

Stack after call

previous contents I
-------- f- SP

Errors None

C extern pascal void ValidRgn (goodRgnHandle)

RgnHandle goodRgnHandle ;

25-132 Window Manager routines

$530E WindDragRect
Pulls a dotted outline of a specified rectangle around the screen, following the
movements of the mouse until the mouse button is released. WindDragRect is a way
of accessing the Control Manager DragRect routine. See the section "DragRect" in
Chapter 4, "Control Manager," in Volume 1 for more information.

Parameters

Stack before call

previous contents

-- longs pace

-- actionProcPtr

-- dragPatternPtr

star-tX

startY

-- dragRectPtr

-- limitRectPtr

-- slopRectPtr

dragFlag

Stack after call

previous contents

moveDelta

--·

--·

--·

--·

--·

-- ·

Long-Space for result

Long-POINTER to routine; NIL for default

Long-POINTER to pattern to use for drag outline

Word-X coordinate of starting point, in global coordinates

Word-Y coordinate of starting point, in global coordinates

Long-POINTER to RECT data structure of rectangle to be dragged

Long-POINTER to RECT of limit rectangle

Long-POINTER to RECT of slop rectangle

Word-Bit flag customizing drag rectangle (see Figure 4-25 in Volume 1)

~SP

Long-High word = amount X changed; low word = amount Y changed

Window Manager routines 25-133

Errors

C

25- 134

None

e xtern pascal Longword WindDragRect (actionProcPtr , dragPatternPtr ,

startX , startY , dragRectPtr,limitRectPtr , slopRectPt r,dragFlag)

VoidProcPtr actionProcPtr ;

Pattern dragPatternPtr ;

Integer startX ;

Integer startY ;

Rect *dragRectPtr ;

Rect *limitRectPtr ;

Rect *slopRectPtr ;

Word dragFlag ;

You can also use the following alternate form of the call:

extern pascal Longword WindDragRect(ac tio~P rocPtr , dragPatternPtr ,
st a rt , d r agRectPtr ,l imitRe ctPtr,slopRectPt r , d r agFlag)

Voi d Proc Ptr actionProcPtr ;

Pattern dragPatternPtr ;

Po i nt start ;

Rect *dragRectPtr ;

Rect *l i mitRectPtr ;

Rect *slopRectPtr ;

Word dragFlag ;

Window Manager routines

$250E

Parameters

Errors

C

WindNewRes
Closes the Window Manager's GrafPort and opens a new GrafFort in the other Super
Hi-Res resolution. However, the screen is not redrawn by the Window Manager in the
new resolution. You can then call the RefreshDesktop routine when all resolution
changes, such as changes to the desktop pattern and window colors, have been
completed.

You should call WindNewRes after the screen resolution has been changed.

The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void WindNewRes ()

Window Manager routines 25-135

$560E

Parameters

WindowGlobal
Specifies a mask that determines how the Window Manager performs tasks. If
windowGlobalMask has bit 15 set to 1, the mask will be ANDed with the global flag.
If windowGlobalMaskhas bit 15 set to 0, the mask will be ORed with the global flag.
WindowGlobal also returns the current state of the global flag in windowGlobalFlag.

Important
At the time of publication, all bits except 15 and Oare reserved for future use.

Stack before call

previous contents

wordspace

windowGlobalMask

Stack after call

previous contents

windowGlobalFlag

Errors None

Word-Space for result

Word-Global mask (see Table 25-11)

f-SP

Word-Current state of window global flag (see Table 25-11)

f-SP

C extern pascal Word WindowGlobal(windowGlobalMask)

Word wi ndowGlobalMask ;

25-136 Window Manager routines

Stopping window highlighting

The only valid values for the window global mask at the time of publication are used
to change the Window Manager's normal highlighting procedure, as shown in
Table 25-10.

Table 25-10
Window g lobal mask values

Value Description

$0000
$0001

Flag does not change (used to retrieve current state of flag)
Stop the Window Manager from highlighting and unhighlighting windows
when NewWindow and CloseWindow calls are made

$FFFE Return the Window Manager to normal highlighting operation

Under normal circumstances, the Window Manager highlights and unhighlights
windows appropriately when they become active or inactive. However, you may wish
to suppress that highlighting in order to speed up window redrawing. For example,
the following pseudocode sequence demonstrates one use of WindowGlobal:

NewWind ow(appropriate parameters) Put up a new window, which is
automatically highlighted .

WindowGlobal ($ 0001) Turn highlighting off .
d oAl e rt () Put up a n alert window, a llow the user

to choose s omething, a nd close the
alert . Although the alert window is
on top of the document window, the

WindowGloba l ($FFFE)
document wi ndow remains highlighted .
Ret u rn the Window Manager to normal
highlighting operations .

The value returned in windowGlobalFlag indicates the state of the flag after any
changes have been made. The values at the time of publication are shown in
Table 25-11.

Table 25-11
Window global flag values

Value

$0000
$0001

Description

Normal highlighting off
Normal highlighting on

Window Manager routines 25-137

$270E

Parameters

Zoom Window
Switches the size and position of a specified window between its current size and
position and its maximum size. If the routine is called again before the specified
window is moved or resized, the window will be resized and positioned to the size and
position before the last Zoom Window was performed. When a Size Window or
Move Window is performed while a window is zoomed, the last size becomes the new
size and position.

Stack before call

previous contents

-- theWindowPtr Long-POINTER to window's GrafPort

~SP

Stack after call

previous contents I
--------~SP

Errors None

C extern pascal void ZoomWindow(theWindowPtr)

GrafPortPtr theWindowPtr;

25-138 Window Manager routines

Window Manager summary
This section briefly summarizes the constants, data structures, and tool set error
codes contained in the Window Manager.

Important

These definitions are provided In the appropriate Interface file.

Table 25-12
Window Manager constants

Name Value Description

Axis parameters
wNoConstraint $0000 No constraint on movement
wHAxisOnly $0001 Horizontal axis only
wVAxisOnly $0002 Vertical axis only

Desktop commands
FrornDesk $00 Subtract region from desktop
ToDesk $01 Add region to desktop
GetDesktop $02 Get handle to desktop region
SetDesktop $03 Set handle to desktop region
GetDeskPat $04 Address of pattern or drawing routine
SetDeskPat $05 Change address of pattern or drawing routine
GetVisDesktop $06 Get desktop region minus visible windows
BackGroundRgn $07 For drawing directly on desktop

SendBehind values
toBottom -2 Send window to bottom
topMost -1 Make window frontmost
bottomMost $0000 Make window bottom

(continued)

Window Manager summary 25-139

Table 25-12 (continued)
Window Manager constants

Name Value

Task mask values
tmMenuKey $0001
tmUpdate $0002
tmFindW $0004
tmMenuSel $0008
tmOpenNDA $0010
tmSysClick $0020
tmDragW $0040
tmContent $0080
tmClose $0100
tmZoom $0200
tmGrow $0400
tmScroll $0800

tmSpecial $1000
tmCRedraw $2000
tminactive $4000
tminfo $8000

TaskMaster codes
winDesk $0010
winMenuBar $0011
wClickCalled $0012
winContent $0013
winDrag $0014
winGrow $0015
winGoAway $0016
winZoom $0017
wininfo $0018
winSpecial $0019
winDeskitem $001A
winFrame $001B
winactMenu $001C
wClosedNDA $001D
wCalledSysEdit $001E
winSysWindow $8000

Description

Handle menu key events
Handle update events
FindWindow called
MenuSelect called
OpenNDA called
SystemClick called
DragWindow called
A~tivate inactive window on click in content region
TrackGoAway called
TrackZoom called
GrowWindow called
Enable scrolling and activate inactive window on
click in scroll bar
Handle events in special menu items
Redraw controls upon activate event
Allows selection of inactive menu items
Don't activate inactive window on click in
information bar

In Desktop
In system menu bar
System click called
In content region
In drag region
In grow region, active window only
In go-away region, active window only
In zoom region, active window only
In information bar
Item ID selected was 250- 255
Item ID selected was 1-249
In Frame, but not on anything else
Inactive menu item selected
Desk accessory closed
Inactive menu item selected
High-order bit set for system windows

25-140 Chapter 25: Window Manager

Table 25-12 (continued)
Window Manager constants

Name Value

varCode values
wDraw $00
wHit $01
wCalcRgns $02
wNew $03
wDispose $04

wFrame values
fHilited $0001
fZoomed $0002
fAllocated $0004
fCtlTie $0008
finfo $0010
fVis $0020
fQContent $0040

fMove $0080
fzoom $0100
fFlex $0200
fGrow $0400
fBScroll $0800
fRScroll $1000
fAlert $2000
fClose $4000
fTitle $8000

Record sizes
windSize $145
wmTaskRecSize $16

Description

Draw window frame command
Hit test command
Compute regions command
Initialization command
Dispose command

Window is highlighted
Window is zoomed
Window record was allocated
State of window's controls tied to state of window
Window has an information bar
Window is visible
Select window if mouseDownEvt in inactive
window's content
Window can be dragged
Window has a zoom box
Data height and width are flexible
Window has a size box
Window has a horizontal scroll bar
Window has a vertical scroll bar
Alert-type window frame
Window has a close box
Window has a title bar

Size of window record
Size of task record

Window Manager summary 25-141

Table 25-13
Window Manager data structures

Name Offset Type

WindRec (window record)
wNext $00 Gra£PortPtr
port $04 Gra£Port
wPadding $AE 16 bytes

wStrucRgn $BE RgnHandle
wContRgn $C2 RgnHandle
wUpdateRgn $C6 RgnHandle
wControls $CA CtlRecHndl
wFrameCtrls $CE CtlRecHndl
wFrame $D2 Word

WlndColor (window color table)
frameColor $00 Word
titleColor $02 Word
tBarColor $04 Word
growColor $06 Word
infoColor $08 Word

Paramllst (NewWindow parameter list)
paramLength $00 Word

wFrameBits $02 Word
wTitle $04 Pointer
wRefCon $08 Longword
wZoom $0C Rect
wColor $14 WindColorPtr
wYOrigin $18 Integer
wXOrigin $1A Integer
wDataH $1C Word
wDataW $1E Word
wMaxH $20 Word

wMaxW $22 Word

25-142 Chapter 25: Window Manager

Definition

Pointer to next window record
Window's port
Space for possible future
expansion
Region of frame plus content
Content region
Update region
Window's control list
Window frame's control list
Bit flags

Color of window frame
Color of'title and bar
Color and pattern of title bar
Color of grow box
Color of information bar

Total number of bytes in
parameter table
Bit flag that describes window
Pointer to window's title
Reserved for application use
Size and positon of content
Pointer to window's color table
Content's vertical origin
Content's horizontal origin
Height of entire document
Width of entire document
Maximum height of content
allowed by GrowWindow
Maximum width of content allowed
by GrowWindow

Table 25-13 (continue d)
Window Manager data structures

Name Offset Type

Paramlist (NewWlndow parameter list)
wScrollVer $24 Word

wScrollHor $26 Word

wPageVer $28 Word

wPageHor $2A Word

winfoRefCon $2C Longword

winfoHeight $30 Word
wFrameDefFroc $32 LongProcPtr

wlnfoDefFroc $36 VoidProcPtr

wContDefFroc $3A VoidProcPtr

wPosition $3E Rect
wPlane $46 GrafFortPtr
wStorage $4A WindRecPtr

WmTaskRec (task record)
wmWhat $00 Word
wmMessage $02 Longword
wmWhen $06 Longword
wmWhere $0A Point
wmModifiers $OE Word
wmTaskData $10 Longword
wmTaskMask $14 Longword

Definition

Number of pixels to scroll
vertically when arrow is clicked
Number of pixels to scroll
horizontally when arrow is clicked
Number of pixels to scroll
vertically for page
Number of pixels to scroll
horizontally for page
Value passed to draw information
bar routine
Height of information bar
Pointer to standard window
definition procedure
Pointer to routine that draws the
interior of the information bar
Pointer to routine that draws the
interior of the content region
Window's starting position and size
Window's starting plane
Pointer to memory to use for
window record

Unchanged from event record
Unchanged from event record
Unchanged from event record
Unchanged from event record
Unchanged from event record
TaskMaster return value
TaskMaster feature mask

Note: The actual assembly-language equates have a lowercase letter o in front of all the
names given in this table .

Window Manager summary 25-143

Table 25-14
Window Manager error codes

Code

$0E01
$0E02
$0E03

25-144

Name

paramLenErr
allocateErr
taskMaskErr

Description

First word of parameter list is the wrong size
Unable to allocate memory for window record
Reserved bits not clear in wmTaskMask field of task
record

Chapter 25: Window Manager

Appendix A

Writing Your Own
Tool Set

The Tool Locator system, which is flexible enough to allow you to write your own tool
sets for use in your applications, supports both system tools and user tools.

When writing your own tool set, the following must be kept in mind:

• Tool sets get control in full native mode.

• Work space should be dynamically assigned. Tool sets should not use any fixed
RAM locations for work space; they should obtain their work space from the
Memory Manager. This avoids memory conflicts, such as those caused by fixed
usage of screen holes.

• A simple interrupt environment should be supplied. Each function should
increment or decrement the busy flag, be reentrant, or disable interrupts during
execution. The most common approach is to use the busy flag. See Chapter 19,
"Scheduler," for more information.

• Before returning control to the caller, routines must restore the caller's execution
environment. This includes the data bank register, the direct-page register, and
any soft switches.

• Routines should not assume the presence of any operating system unless the
operating system is directly relevant; for example, a routine that reads or writes a
file, where other considerations demand that the file type be known anyway.

A-1

Structure of the Tool Locator
The Tool Locator requires a few fixed RAM locations and no fixed ROM locations.
All functions are accessed through the Tool Locator via their tool set number and
function number. The Tool Locator uses the tool set number to find an entry in the
tool pointer table (TP1). This table contains pointers to function pointer tables
(FPTs) . Each tool set has an FPT that contains pointers to the individual routines in
the tool. The Tool Locator uses the function number to find the address of the
routine being called.

Each tool in ROM has an FPT in ROM. In ROM, there is also a TPT that points to all
the FPTs in ROM. One fixed RAM location is used to point to this TPT in ROM. This
location is initialized at power up and warm boot by the firmware. In this way, the
address of the TPT in ROM does not ever have to be fixed.

The TPT has the form shown in Table A-1.

Table A-1
Struc ture of a TPT (tool pointer table)

Item Length Description

Count 4 bytes Number of tool sets plus 1
Pointer to TS 1 FPT 4 bytes Pointer to FPT for tool set number 1
Pointer to TS 2 FPT 4 bytes Pointer to FPT for tool set number 2

Pointer to TS n FPT 4 bytes Pointer to FPT for tool set number n

The FPT has the form shown in Table A-2.

Table A-2
Structure of an FPT (func tion pointer table)

Item Length Description

Count 4 bytes Number of routines plus 1
Address of Fl -1 4 bytes Pointer to Bootlnit routine minus 1
Address of F2 - 1 4 bytes Pointer to Startup routine minus 1
Address of F3 -1 4 bytes Pointer to ShutDown routine minus 1
Address of F4 - 1 4 bytes Pointer to Version routine minus 1
Address of F5 - 1 4 bytes Pointer to Reset routine minus 1
Address of F6 - 1 4 bytes Pointer to Status routine minus 1
Address of F7 - 1 4 bytes Pointer to reserved routine minus 1
Address of F8 - 1 4 bytes Pointer to reserved routine minus 1
Address of F9 - 1 4 bytes Pointer to first nonrequired routine minus 1

Address of Fn - l 4 bytes Pointer to last nonrequired routine minus 1

A-2 Append ix A : Writing Your Own Tool Set

Tool set numbers and function numbers
Each system tool is assigned a permanent tool number. Assignment starts at one and
continues with each successive integer.

Each function within a tool set is assigned a permanent function number. For the
functions within each tool, assignment starts at 1 and continues with each successive
integer. Thus, each function has a unique, permanent identifier of the form
(tsNumJuncNum). Both tsNum and JuncNum are 8-bit numbers. The tool set
numbers assigned to the Apple tools are shown in Table 24-2 in Chapter 24, "Tool
Locator."

For each tool set, certain standard routines must be present. Each tool set must have
a boot initialization routine that is executed at boot time either by the ROM startup
code or when the tool set is installed in the system. In addition, each tool set has an
application StartUp routine, an application ShutDown routine to allow an
application to turn each tool on and off, a Version routine that returns information
about the version of the tool, a Reset routine to be called when the system is reset,
and a Status routine to indicate whether the tool set is active.

All tools must return version information in the form of a word. The high byte of the
word indicates the major release number (starting with 1). The low byte of the word
indicates the minor release number (starting with 0). The most significant bit of the
word indicates whether the code is an official release or a prototype (no distinction is
made between alpha, beta, or other prototype releases) .

The standard routines are summarized in Table A-3.

Table A-3
Standard tool set routine numbers

FuncNum

1
2
3
4
5
6
7
8

Description

Boot initialization function for each tool set
Application startup function for each tool set
Application shutdown function for each tool set
Version information
Reset
Status
Reserved for future use
Reserved for future use

Tool set numbers and function numbers A-3

Obtaining memory
Tool sets are to obtain any memory they need dynamically (using as little fixed
memory as possible) through the Memory Manager. To do that, a tool set needs
some way to find the location of its data structures. The Tool Locator maintains a
table of work area pointers for the individual tools . The work area pointer table
CW APT) is a table of pointers to the work areas of individual tools.

In the W APT, each tool will have an entry for its own use. Entries are assigned by tool
set number (tool 04 has entry 04 and so on). A pointer to the W APT is kept at a fixed
memory location in RAM so that space for the table can be allocated dynamically.

The Tool Locator system permanently reserves some space in bank $El for the
purposes shown in Table A-4.

Table A-4
Tool Locator permanent RAM space

Address

$E103CO

$E103C4

$E103C8

$E103CC

$E10000

Length

4 bytes

4 bytes

4 bytes

4 bytes

16 bytes

Description

Pointer to the active TPT. The pointer is to the ROM-based
TPT if there are no RAM-based tool sets and no RAM-based
ROM patches. Otherwise, it will point to a RAM-based TPT.

Pointer to the active user's TPT. This pointer is O initially,
indicating that no user tools are present.

Pointer to the WAPT. The WAPT parallels the TPT. Each
W APT entry is a pointer to a work area assigned to the
corresponding tool set. At startup time, each WAPT entry
is set to 0, indicating no assigned work area.

Pointer to the user's Work Area Pointer Table (WAPT).

Entry points to the dispatcher.

This is the only RAM permanently reserved by the Tool Locator system.

A-4 Appendix A: Writing Your Own Tool Set

Tool Locator system initialization
Each tool set is initialized before use by application programs. Two types of
initialization are needed: boot initialization and application initialization. Boot
initialization occurs either at system startup time (boot time) or, for tool sets loaded
from disk, when the tool is installed. Regardless of the applications to be executed,
the system calls the boot initialization function of every tool set. Thus, each tool set
must have a boot initialization routine (juncNum = l), even if it does nothing. This
function has no input or output parameters.

Application initialization occurs during application execution. The application calls
the application startup function (juncNum = 2) of each tool set it will use. The
application startup function performs the chores needed to start up the tool set so
the application can use it. This function may have inputs and outputs, as defined by
the individual tool set.

The application shutdown function (juncNum = 3) should be executed as soon as the
application no longer needs to use the tool. The shutdown releases the resources
used by the tool. As a precaution against applications forgetting to execute the
shutdown function, the startup function should either execute the shutdown function
itself or do something else to ensure a reasonable startup state.

The provision of two initialization times reflects the needs of currently envisioned
tools. On the one hand, for example, the Memory Manager requires boot time
initialization because it must operate properly even before any application has been
loaded. On the other hand, SANE needs to be initialized only if the system executes
some application or desk accessory that uses it. Initializing only the tool sets that will
be used saves resources, particularly RAM.

Disk and RAM structure of tool sets
System tool sets are load files kept in the TOOLS subdirectory of the SYSTEM
directory. Their file type is $BA; each tool set begins with a function pointer table.

User tool sets may be in any form; it is the responsibility of the application to
properly load and install such tool sets.

Disk and RAM structure of tool sets A-5

Installing your tool set
Before you make any calls to a user tool set, you must install it into the system. You
do this by calling the Tool Locator routine SetTSPtr. SetTSPtr takes three inputs on
the stack as follows:

Stack before SetTSPtr

previous contents

userOrSystem

tsNum

-- j)JtPtr - ·

Word-$0000 = system tool set, $8000 = user tool set

Word-Tool set number of the tool set

Long-POINTER to function pointer table for tool set

f-SP

When SetTSPtr is called, your tool is installed in the system and its boot initialization
function call is executed. The following example illustrates installation of a sample
user tool:

,---
Install START

clc

xce

php

rep #$30

PushWord $8000

PushWord #$23

PushLong #CallTable

SetTSPtr

plp

xce

rts

END

Switch to full native mode and

save initial state

16- bit registers

Signal a user tool

Put the tool number on the stack

Point to call table

Restore machine state

A-6 Appendix A: Writing Your Own Tool Set

·---'
Call Table START

long (TheEnd-CallTable) /4

long MyBootinit-1

long MyStartUp-1

long MyShutDown-1

long MyVersion-1

long MyReset-1

long Notimp-1

long Notimp-1

long Not!mp-1

long FirstFunc-1

long LastFunc-1

TheEND

END

·---'
MyBootinit START

lda #0

clc

rtl

END

; Called when installed

·---'
My St art Up START

RTLl equ 1

RTL2 equ RTL1+3

ZPToUse equ RTL2+3

ToolNum equ 5

lda ZPToUse , s

pea $8000

phx

pea 0

pha

lda ToolNum,s

and #$00FF

sta ToolNum,s

SetWAP

User passes me word containing l ocation

to use in bank zero

Will be SP+S just before SetWAP call

Get caller ' s value

Get ready to modify user tool tables

Tool set number and function number -

function number will be erased later

High-order word is zero

Low- order word is caller's value

Get tool set number and function number

Eliminate function number (MSB)

Parameter now contains only tool set number

Set our work area pointer

Installing your tool set A- 7

Next , the input parameter must be removed from the stack.

Do this by sliding the two return addresses up the stack by two bytes ,

such that the most-significant word of the second-level return address

slides right into the spot previously occupied by the input parameter .

This isn ' t very difficult ,

number of words.

lda RTL2+1 , s

sta ZPToUse , s

lda RTL1+2 , s

sta ZPToUse-2

lda RTLl

sta RTL1+2

The bytes at SP+l and SP+2

pla

lda #0

clc

rtl

END

because the two addresses occupy the same

Catch upper two bytes of RTL2

Write them over input parameter space

Catch MSB of RTLl and LSB of RTL2

(or RTLl and RTLl+l) are empty and may be pulled

as a single word !

Report that no error occurred

; Done

·---'
MyShutDown START

cmp #0

beq Nevermind

pea $8000

txa

and #$00FF

pha

pea 0

pea 0

SetWAP

Nevermind ANOP

lda #0

clc

rtl

END

Clear out the WAPT entry

Tool set number and function number were

in X on entry

Eliminate function number (MSB)

Tell SetWap which entry to clear

and

zero the entry

, --- --------------------
MyVersion START

RTLl equ 1

RTL2 equ RTL1+3

VerNum equ RTL2+3

lda #$90 Version 1.0 prototype

sta VerNum,s

lda #0

clc

rtl

END
A-8 Appendix A: Writing Your Own Tool Set

·---'
MyReset START

lda #0

clc

rtl

END

·------- --'
Notimp START

txa

xba

ora

sec

rtl

END

#$00FF

Tool set number and function number were

in X on entry

Tool set number was in LSB , move to MSB

for error

Easy way to put $FF in LSB as error code

Raise error flag

·---'
FirstFunc START

lda #0

clc

rtl

END

·- --'
LastFunc START

lda #0

clc

rtl

END

; - --
Notes

The long macro deposits a 4-byte value in memory , low bytes first .

The PushWord macro pushes a word onto the stack (either from a memory

location or with a pea instruction if # is used) .

The PushLong macro pushes a long on the stack (either from memory

or with two pea instructions if# is used) .

Disk and RAM structure of tool sets A -9

Function execution environment
When your function is called, the machine is in full native mode and the following
three registers are set with specific information to make the function's job easier:

• A register= low-order word of entry in WAPT for tool

• Y register = high-order word of entry in W APT for tool

• X register = function number and tool set number

When the function is called, the stack looks like this:

previous contents

outputSpace

inputl

-- input2

inputLast

Rn I Rn
Rn If- SP

- - ·

Word or Long-Space for output

Word or Long-First input

Word or Long-Second input

Word or Long-Last input

3 bytes-RTL address

A-1 O Appendix A: Writing Your Own Tool Set

Appendix B

Tool Set
Error Codes

In Appendix B, the tool set error codes are listed and summarized in error number
order. If a tool set error has not occurred, the carry flag (c flag) will not be set and
the accumulator will contain $0000.

Table 8-1
Tool set error codes

Code Name

System failure codes
$0001
$0004
$000A
$000B
$000C
$000D
$0015
$0017
$0018
$0019
$00 1A
$001B
$001C
$001D
$001E
$0020
$0021

pdosUnClrndintErr
divByZeroErr
pdosVCBErr
pdosFCBErr
pdosBlkOErr
pdosintShdwErr
segLoaderlErr
sPackageOErr
packagelErr
package2Err
package3Err
package4Err
packageSErr
package6Err
package7Err
package8Err
package9Err

Description

Unclaimed interrupt (ProDOS 16)
Division by 0
Volume control block unusable (ProDOS 16)
File control block unusable (ProDOS 16)
Block zero allocated illegally (ProDOS 16)
Interrupt with I/0 shadowing off (ProDOS 16)
Segment Loader error
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package
Can't load a package

(continued)

B-1

Table B-1 (continued)
Tool set error codes

Code Name

System fai lure codes
$0022 packagelOErr
$0023 packagellErr
$0024 package12Err
$0025 outOfMemErr
$0026 segLoader2Err
$0027 fMapTrshdErr
$0028 stkOvrFlwErr
$0030 psinstDiskErr
$0032-53
$0100 stupVolMntErr
Tool Locator codes
$0001 toolNotFoundErr
$0002 funcNotFoundErr
$0110 toolVersionErr
$0111 messNotFoundErr
Memory Manager codes
$0201 memErr
$0202 emptyErr
$0203 notEmptyErr
$0204 lockErr

$0205 purgeErr
$0206 handleErr
$0207 idErr
$0208 attrErr
Miscellaneous Tool Set codes
$0301 badinputErr
$0302 noDevParamErr
$0303 taskinstlErr
$0304 noSigTaskErr
$0305 queueDmgdErr
$0306 taskNtFdErr
$0307 firmTaskErr
$0308 hbQueueBadErr
$0309 unCnctdDevErr

$030B idTagNtAvlErr

Description

Can't load a package
Can't load a package
Can't load a package
Out of memory
Segment Loader error
File map destroyed
Stack overflow
Please insert disk (File Manager alert)
Memory Manager errors
Can't mount system startup volume

Specified tool set not found
Specified routine not found
Specified minimum version not found
Specified message not found

Unable to allocate block
Illegal operation on an empty handle
Empty handle expected for this operation
Illegal operation on a locked or
immovable block
Attempt to purge an unpurgeable block
Invalid handle
Invalid user ID
Illegal operation with specified attributes

Bad input parameter
No device for input parameter
Specified task already in Heartbeat queue
No signature detected in task header
Damaged Heartbeat queue detected
Specified task not in queue
Unsuccessful firmware task
Damaged HeartBeat queue detected
Dispatch attempted to unconnected
device
No ID tag available

8-2 Append ix 8: Tool Set Error Codes

Table 8-1 (continued)
Tool set error codes

Code Name Description

QuickDraw II codes
$0401 alreadyinitialized QuickDraw II already initialized
$0402 cannotReset Never used
$0403 notinitialized QuickDraw II not initialized
$0410 screenReserved Screen reserved
$0411 badRect Invalid rectangle specified
$0420 notEqualChunkiness Chunkiness not equal
$0430 rgnAlreadyOpen Region already open
$0431 rgnNotOpen Region not open
$0432 rgnScanOverflow Region scan overflow
$0433 rgnFull Region full
$0440 polyAlreadyOpen Polygon already open
$0441 polyNotOpen Polygon not open
$0442 polyTooBig Polygon too big
$0450 badTableNum Invalid color table number
$0451 badColorNum Invalid color number
$0452 badScanLine Invalid scan line number
$04FF Not implemented
Desk Manager codes
$0510 daNotFound Specified DA not available
$0511 notSysWindow Window pointer is not a pointer to a

window owned by an NDA
Event Manager codes
$0601 emDupStrtUpErr EMStartUp already called
$0602 emResetErr Can't reset Event Manager
$0603 emNotActErr Event Manager not active
$0604 emBadEvtCodeErr Event code is greater than 15
$0605 emBadBttnNoErr Button number specified is not O or 1
$0606 emQSiz2LrgErr Size of event queue is greater than 3639
$0607 emNoMemQueueErr Insufficient memory available for queue
$0681 emBadEvtQErr Event queue damaged- fatal system error
$0682 emBadQHndlErr Queue handle damaged-fatal system error
Sound Tool Set codes
$0810 noDOCFndErr No DOC or RAM found
$0811 docAddrRngErr DOC address range error
$0812 noSAppinitErr No SoundStartUp call made
$0813 invalGenNumErr Invalid generator number
$0814 synthModeErr Synthesizer mode error
$0815 genBusyErr Generator already in use
$0817 mstrIRQNotAssgnErr Master IRQ not assigned
$0818 sndAlreadyStrtErr Sound Tool Set already started
$08FF unclaimedSndintErr Unclaimed sound interrupt error (reported

through System Failure Manager)
(continued)

Appendix B: Tool Set Error Codes B-3

Table B-1 (continued)
Tool set error codes

Code Name

Apple Desktop Bus Tool Set codes
$0910 cmndincomplete
$0911 cant Sync
$0982 adbBusy
$0983 devNotAtAddr
$0984 srqListFull
Integer Math Tool Set codes
$0B01 imBadinptParam
$0B02 imillegalChar
$0B03 imOverflow
$0B04 imStrOverflow
Text Tool Set codes
$0C01 bad.DevType
$0C02 bad.DevNum
$0C03 badMode
$0C04 unDefHW
$0COS lostDev
$0C06 lostFile
$0C07 badTitle
$0C08 no Room
$0C09 noDevice
$0COA noFile

$0COB dupFile

$0COC notClosed
$0COD notOpen
$0COE badFormat
$0COF ringBuffOFlo

$0C10 writeProtected
$0C40 devErr

Window Manager codes
$0E01 paramLenErr

$0E02
$0E03

allocateErr
taskMaskErr

Control Manager codes
$1001 wmNotStartedUp

Description

Command not completed
Can't synchronize with system
ADB busy (command pending)
Device not present at address
SRQ list full

Bad input parameter
Illegal character in string
Integer or Longint overflow
String overflow

Illegal device type
Illegal device number
Illegal operation
Undefined hardware error
Lost device: device no longer on-line
File no longer in diskette directory
Illegal filename
Insufficient space on specified diskette
Specified volume not on-line
Specified file not in directory of specified
volume
Duplicate file: attempt to rewrite a file
when a file of that name already exists
Attempt to open file that is already open
Attempt to access a closed file
Error in reading real or integer number
Ring buffer overflow: characters arriving
faster than the input buffer can accept them
Specified diskette is write-protected
Device error: device failed to complete a
read or write correctly

First word of parameter list is the wrong
size
Unable to allocate window record
Reserved bits not clear in wmTaskMask
field of WmTaskRec

Window Manager not initialized

B-4 Appendix B: Tool Set Error Codes

Table B-1 (continued)
Tool set error codes

Code Name

Print Manager codes
$1301 missingDriver

$1302 portNotOn

$1303 noPrintRecord
$1304 badLaserPrep

$1305 badLPFile

$1306 papConnNotOpen

$1307 papReadWriteErr
$1321 startUpAlreadyMade
$1322 invalidCtlVal
LlneEdit Tool Set codes
$1401 leDupStrtUpErr
$1402 leResetError
$1403 leNotActiveErr
$1404 leScrapErr
Dialog Manager codes
$150A baditemType
$150B newitemFailed
$150C itemNotFound
$150D notModalDialog

Scrap Manager codes
$1610 badScrapType
Font Manager codes
$1B01 fmDupStartUpErr
$1B02 fmResetErr
$1B03 fmNotActiveErr
$1B04 fmFamNotFndErr
$1B05 fmFontNtFndErr
$1B06 fmFontMemErr
$1B07 fmSysFontErr
$1B08 fmBadFamNumErr
$1B09 fmBadSizeErr
$1BOA fmBadNameErr
$1BOB fmMenuErr
$1BOC fmScaleSizeErr

Description

Specified driver not in the DRIVERS
subdirectory of the SYSTEM subdirectory
Specified port not selected in the control
panel
No print record specified
Version of LaserPrep file in LaserWriter is not
compatible with this version of Print Manager
Version of LaserPrep file in DRIVERS
subdirectory of SYSTEM subdirectory is not
compatible with this version of Print Manager
Connection can't be established with the
LaserWriter
Read-write error on the LaserWriter
LLDStartUp call already made
Invalid control value specified

LEStartUp already called
Can't reset LineEdit
LineEdit not active
Desk scrap too big to copy

Inappropriate item type
Item creation failed
No such item
Frontmost window not a modal dialog
window

No scrap of this type

FMStartUp call already made
Can't reset the Font Manager
Font Manager not active
Family not found
Font not found
Font not in memory
System font cannot be purgeable
Illegal family number
Illegal font size
Illegal name length
FixFontMenu never called
Scaled size of font exceeds limits

Appendix B: Tool Set Error Codes B-5

Appendix C

Tool
and

Set Dependencies
Startup Order

In Appendix C, the interdependencies of the tool sets are listed, and the order in
which the tool sets must be started up is given.

Tool set dependencies
The Tool Locator (tool set number $01) does not depend on the presence of any of
the other tool sets; rather, all of the other tool sets depend on the Tool Locator.
Thus, Table C-1 begins with the Memory Manager (tool set number $02) and
continues in tool set number order.

•:• Note: The dependencies given in Table C-1 differ in some minor respects from
those given in the individual tool set chapters. Those in Table C-1 are the most
current at the time of publication; they were up to date as of October 1, 1987. For
any further updates on the dependencies between the tool sets, check Apple IIGS
Technical Note #12.

C-1

Table C-1
Tool set dependencies

Tool set
number

Tool set
name

Minimum version
needed

Memory Manager (tool set number $02) depends on
$01 #01 Tool Locator 1. 0

Miscellaneous Tool Set (tool set number $03) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0

QulckDraw II (tool set number $04) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0

Desk Manager (tool set number $05) depends on
$01 #01 Tool Locator 1.2
$02 #02 Memory Manager 1.2
$03 #03 Miscellaneous Tool Set 1.2
$04 #04 QuickDraw II 1. 2
$06 #o6 Event Manager 1. 0
$OE #14 Window Manager 1.3
$OF #15 Menu Manager 1.3
$10 #16 Control Manager 1.3
$14 #20 LineEdit Tool Set 1.0
$15 #21 Dialog Manager 1.0
$16 #22 Scrap Manager 1.0

Event Manager (tool set number $06) depends on
$01 #01 Tool Locator 1. 0
$02 #02 Memory Manager 1. 0
$03 #03 Miscellaneous Tool Set 1.0

Scheduler (tool set number $07) depends on
$01 #01 Tool Locator 1.0
$03 #03 Miscellaneous Tool Set 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0

Sound Tool Set (tool set number $08) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0

Apple Desktop Bus Tool Set (tool set number $09) depends on
$01 #01 Tool Locator 1. 0 ·

C-2 Appendix C: Tool Set Dependencies and Startup Order

Table C-1 (continued)
Tool set dependencies

Tool set
number

Tool set
name

Minimum version
needed

SANE Tool Set (tool set number $QA) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0

Integer Math Tool Set (tool set number $OB) depends on
$01 #01 Tool Locator 1. 0

Text Tool Set (tool set number $QC) depends on
$01 #01 Tool Locator 1.0

Window Manager (tool set number $OE) depends on
$01 #01 Tool Locator 1. 2
$02 #02 Memory Manager 1.2
$03 #03 Miscellaneous Tool Set 1.2
$04 #04 QuickDraw II 1. 2
$06 #06 Event Manager 1. 0

Menu Manager (tool set number $OF) depends on
$01 #01 Tool Locator 1. 2
$02 #02 Memory Manager 1. 2
$03 #03 Miscellaneous Tool Set 1. 2
$04 #04 QuickDraw II 1. 2
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$10 #16 Control Manager 1.3

Control Manager (tool set number $10) depends on
$01 #01 Tool Locator 1. 2
$02 #02 Memory Manager 1.2
$03 #03 Miscellaneous Tool Set 1.2
$04 #04 QuickDraw II 1. 2
$06 #o6 Event Manager 1.0
$OE #14 Window Manager 1.3

QulckDraw II Auxiliary (tool set number $12) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 QuickDraw II 1. 2

(continued)

Tool set dependencies C-3

Table C-1 (continued)
Tool set dependencies

Tool set
number

Tool set
name

Minimum version
needed

Print Manager (tool set number $13) depends on
$01 #Ql Tool Locator 1.0
$02 #02 Memory Manager 2.0
$03 #03 Miscellaneous Tool Set 2.0
$04 #04 Quicl<Draw II 2.0
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$OF #15 Menu Manager 1.3
$10 #16 Control Manager 1.3
$12 #18 QuickDraw II Auxiliary 1.0
$14 #20 LineEdit Tool Set 1.0
$15 #21 Dialog Manager 1.1
$1B #27 Font Manager 1.0
$1C #28 List Manager 1.0

LineEdit Tool Set (tool set number $14) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 Quicl<Draw II 1.1
$06 #06 Event Manager 1.0

•:• Note: If you are going to use the LEToScrap or
LEFromScrap routines, the Scrap Manager must be
loaded and started up. If you are going to use
LETextBox2, you must load and start up the Integer
Math Tool Set.

Dialog Manager (tool set number $15) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 Quicl<DrawII 1.0
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$OF #15 Menu Manager 1.3
$10 #16 Control Manager 1.3
$14 #20 LineEdit Tool Set 1.0

Scrap Manager (tool set number $16) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0

C-4 Appendix C: Tool Set Dependencies and Startup Order

Table C-1 (continued)
Tool set dependencies

Tool set
number

Tool set
name

Minimum version
needed

Standard File Tool Set (tool set number $17) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$03 #03 Miscellaneous Tool Set 1.0
$ 04 #04 QuickDraw II 1. 0
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$10 #16 Control Manager 1. 3
$OF #15 Menu Manager 1.3
$14 #20 LineEdit Tool Set 1. 0
$15 #21 Dialog Manager 1.1

Font Manager (tool set number $1 B) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1. 0
$04 #04 QuickDraw II 1. 1

•:• Note: In addition to these tool sets, the ChooseFont
routine requires

$03 #03 Miscellaneous Tool Set
$OB #ll Integer Math Tool Set
$OE #14 Window Manager
$10 #16 Control Manager
$14 #20 LineEdit Tool Set
$15 #21 Dialog Manager
$1C #28 List Manager

and the FixFontMenu routine requires

$OF #15
$ lC #28

Menu Manager
List Manager

1.2
1.0
1.3
1.3
1.0
1.0
1.0

1.3
1.0

If you are using the shadowed, outlined, or underlined
text styles, QuickDraw II Auxiliary (tool set number $12)
must be loaded and started up.

list Manager (tool set number $1 C) depends on
$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1. 0
$03 #03 Miscellaneous Tool Set 1.0
$04 #04 QuickDraw II 1.0
$06 #06 Event Manager 1.0
$OE #14 Window Manager 1.3
$10 #16 Control Manager 1. 3

Tool set dependencies C-5

Tool set startup order
Because each tool set depends on the presence of other tool sets, certain tool sets
must be started up in a prescribed order for others to work. This order is shown in
Table C-2, with tool sets lower on the list depending on the presence of all the tool
sets higher on the list. Thus, all tool sets from the Tool Locator through the Control
Manager must be started up before the Menu Manager.

When you shut the tools down before you quit your application, you must shut them
down in the reverse order from that in which they were started up; that is, the last one
started up must be shut down first, the next-to-last started up shut down next, and so
on.

•!• Note: The startup order given in Table C-2 differs in some minor respects from that
given in Chapter 2. Use the order given in Table C-2. For further updates, refer to
Apple IIGS Technical Note #12.

Table C-2
Tool set startup order

Tool set Tool set
number name

$01 #01 Tool Locator
$02 #02 Memory Manager
$03 #03 Miscellaneous Tool Set
$04 #04 QuickDraw II
$06 #06 Event Manager
$OE #14 Window Manager
$10 #16 Control Manager
$OF #15 Menu Manager
$14 #20 LineEdit Tool Set
$15 #21 Dialog Manager
$17 #23 Standard File Operations Tool Set
$16 #22 Scrap Manager
$05 #05 Desk Manager
$ IC #28 List Manager
$1B #27 Font Manager
$13 #19 Print Manager

Note: If you are using QuickDraw II Auxiliary, it
must be started up after QuickDraw II.

You may assume that tool sets other than those listed in Table C-2 do not need to be
started up in any particular order; that is, they may be started up or shut down at any
time.

C-6 Appendix C: Tool Set Dependencies and Startup Order

Appendix D

List of Routines
by Tool Set Number
and Routine Number

This appendix lists the tool set routines in tool set number and routine number
order. The last two digits of the heaxadecimal number comprise the tool set
number; the first two digits comprise the routine number. Thus, the number $0410
means the routine numbered $04 in the tool set numbered $10.

The list provided in this appendix can be useful, for example, when you are using a
debugger and obtain the hexadecimal number, but not the name, of the routine.
You can find the name by using this list and then looking up the name in the
appropriate chapter.

D-1

Table D-1
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Tool Locator $1D02 Tota!Mem $1D03 GetMouseClamp
(Chapter 24) $1E02 CheckHandle $1E03 PosMouse
$0101 TLBootinit $1F02 CompactMem $1F03 ServeMouse
$0201 TLStartUp $2002 HLock $2003 GetNewID
$0301 TLShutDown $2102 HLockAI! $2103 DeleteID
$0401 TL Version $2202 HUnlock $2203 StatusID
$0501 TLReset $2302 HUnlockAll $2303 IntSource
$0601 TLStatus $2402 SetPurge $2403 FWEntry
$0901 GetTSPtr $2502 SetPurgeAll $2503 GetTick
$0A01 SetTSPtr $2802 PtrToHand $2603 PackBytes
$0B01 GetFuncPtr $2902 HandToPtr $2703 UnPackBytes
$0C01 GetWAP $2A02 Hand To Hand $2803 Munger
$0D01 SetWAP $2B02 BlockMove $2903 GetIRQEnable
$0E01 LoadTools $2A03 SetAbsClamp
$0F01 LoadOneTool Miscellaneous Tool Set $2B03 GetAbsClamp
$1001 UnloadOneTool (Chapter 14)

$2C03 SysBeep $0103 MTBootinit $1101 TLMountVolume
$0203 MTStartUp $1201 TL TextMountVolume QuickDraw II
$0303 MTShutDown (Chapter 16) $1301 SaveTextState
$0403 MTVersion $0104 QDBootinit $1401 RestoreTextState
$0503 MTReset $0204 QDStartUp $1501 MessageCenter
$0603 MTStatus $0304 QDShutDown

Memory Manager $0903 WriteBRam $0404 QDVersion
(Chapter 12) $0A03 ReadBRam $0504 QDReset
$0102 MMBootinit $0B03 WriteBParam $0604 QDStatus
$0202 MMStartUp $0C03 ReadBParam $0904 GetAddress
$0302 MMShutDown $0D03 ReadTimeHex $0A04 GrafOn
$0402 MMVersion $0E03 WriteTimeHex $0B04 GrafOff
$0502 MMReset $0F03 ReadAsciiTime $0C04 GetStandardSCB
$0602 MMStatus $1003 SetVector $0D04 InitColorTable
$0902 NewHandle $1103 GetVector $0E04 SetColorTable
$0A02 ReallocHandle $1203 SetHeartBeat $0F04 GetColorTable
$0B02 Restore Handle $1303 DelHeartBeat $1004 SetColorEntry
$1002 DisposeHandle $1403 ClrHeartBeat $1104 GetColorEntry
$1102 DisposeAll $1503 SysFailMgr $1204 SetSCB
$1202 PurgeHandle $1603 GetAddr $1304 GetSCB
$1302 PurgeA!l $1703 ReadMouse $1404 SetAllSCBs
$1802 GetHandleSize $1803 InitMouse $1504 ClearScreen
$1902 SetHandleSize $1903 SetMouse $1604 SetMasterSCB
$1A02 FindHandle $1A03 HomeMouse $1704 GetMasterSCB
$1B02 FreeMem $1B03 ClearMouse $1804 OpenPort
$1C02 MaxBlock $1C03 ClampMouse $1904 InitPort

D-2 Appendix D: List of Routi nes by Tool Set Number a nd Ro utine Numbe r

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

QuickDraw II $4104 GetRgnSave $6904 CopyRgn
(Chapter 16) $4204 SetPolySave $6A04 SetEmptyRgn
$1A04 ClosePort $4304 GetPolySave $6B04 SetRectRgn
$1B04 SetPort $4404 SetGrafFrocs $6C04 RectRgn
$1C04 GetPort $4504 GetGrafFrocs $6D04 OpenRgn
$1D04 SetPortLoc $4604 SetUserField $6E04 CloseRgn
$1E04 GetPortLoc $4704 Get User Field $6F04 OffsetRgn
$1F04 SetPortRect $4804 SetSysField $7004 InsetRgn
$2004 GetPortRect $4904 GetSysField $7104 SectRgn
$2104 SetPortSize $4A04 SetRect $7204 UnionRgn
$2204 MovePortTo $4B04 OffsetRect $7304 DiffRgn
$2304 SetOrigin $4C04 InsetRect $7404 XorRgn
$2404 SetClip $4D04 SectRect $7504 PtinRgn
$2504 GetClip $4E04 UnionRect $7604 RectlnRgn
$2604 ClipRect $4F04 PtlnRect $7704 EqualRgn
$2704 HidePen $5004 Pt2Rect $7804 EmptyRgn
$2804 ShowPen $5104 EqualRect $7904 FrameRgn
$2904 GetPen $5204 Empty Re ct $7A04 PaintRgn
$2A04 SetPenState $5204 NotEmptyRect $7B04 EraseRgn
$2B04 GetPenState $5304 FrameRect $7C04 InvertRgn
$2C04 SetPenSize $5404 PaintRect $7D04 FillRgn
$2D04 GetPenSize $5504 EraseRect $7E04 ScrollRect
$2E04 SetPenMode $5604 InvertRect $7F04 PaintPixels
$2F04 GetPenMode $5704 FillRect $8004 AddPt
$3004 SetPenPat $5804 FrameOval $8104 SubPt
$3104 GetPenPat $5904 PaintOval $8204 SetPt
$3204 SetPenMask $5A04 EraseOval $8304 EqualPt
$3304 GetPenMask $5B04 InvertOval $8404 LocalToG lobal
$3404 SetBackPat $5C04 FillOval $8504 GlobalToLocal
$3504 GetBackPat $5D04 FrameRRect $8604 Random
$3604 PenNormal $5E04 PaintRRect $8704 SetRandSeed
$3704 SetSolidPenPat $5F04 EraseRRect $8804 GetPixel
$3804 SetSolidBackPat $6004 InvertRRect $8904 ScalePt
$3904 SolidPattern $6104 FillRRect $8A04 MapPt
$3A04 MoveTo $6204 FrameArc $8B04 MapRect
$3B04 Move $6304 PaintArc $8C04 MapRgn
$3C04 LineTo $6404 EraseArc $8D04 SetStdProcs
$3D04 Line $6504 InvertArc $8E04 SetCursor
$3E04 SetPicSave $6604 FillArc $8F04 GetCursorAdr
$3F04 GetPicSave $6704 NewRgn
$4004 SetRgnSave $6804 DisposeRgn (continued)

Appendix D: List of Routines by Tool Set Number and Routine Number D-3

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Rou tine

$B704 OpenPicture (Ch. 17) Desk Manager QulckDraw II
(Chapter 5) (Chapter 16) $B804 PicComment (Ch. 17)
$0105 DeskBootinit $9004 HideCursor $B904 ClosePicture (Ch. 17)
$0205 DeskStartUp $9104 ShowCursor $BA04 DrawPicture (Ch. 17)
$0305 DeskShutDown $9204 ObscureCursor $BB04 KillPicture (Ch. 17)
$0405 Desk Version $9404 SetFont $BC04 FramePoly
$0505 DeskReset $9504 GetFont $BD04 PaintPoly
$0605 DeskStatus $9604 GetFontinfo $BE04 ErasePoly
$0905 SaveScrn $9704 GetFontGlobals $BF04 InvertPoly
$0A05 RestScrn $9804 SetFontFlags $C004 FillPoly
$0B05 SaveAll $9904 GetFontFlags $C104 OpenPoly
$0C05 RestAll $9A04 SetTextFace $C204 ClosePoly
$0E05 InstallNDA $9B04 GetTextFace $C304 KillPoly
$0F05 Install CD A $9C04 SetTextMode $C404 OffsetPoly
$1105 ChooseCDA $9D04 GetTextMode $C504 MapPoly
$1305 SetDAStrPtr $9E04 SetSpaceExtra $C604 SetCli pHandle
$1405 GetDAStrPtr $9F04 GetSpaceExtra $C704 GetClipHandle
$1505 OpenNDA $A004 SetForeColor $C804 SetVisHandle
$1605 CloseNDA $A104 GetForeColor $C904 GetVisHandle
$1705 SystemClick $A204 SetBackColor $CA04 InitCursor
$1805 SystemEdit $A304 GetBackColor $CB04 SetBufDims
$1905 System Task $A404 DrawChar $CC04 ForceBufDims
$1A05 SystemEvent $A504 DrawString $CD04 SaveBufDims
$1B05 GetNumNDAs $A604 DrawCString $CE04 RestoreBufDims
$1C05 CloseNDAByWinPtr $A704 DrawText $CF04 GetFGSize
$1D05 CloseA!lNDAs $A804 Char Width $D004 SetFontID
$1E05 FixAppleMenu $A904 String Width $D104 GetFontID

$AA04 CStringWidth $D204 SetTextSize
$AB04 TextWidth $D304 GetTextSize
$AC04 Char Bounds $D404 SetCharExtra
$AD04 String Bounds $D504 GetCharExtra
$AE04 CStringBounds $D604 PPToPort
$AF04 TextBounds $D704 InflateTextBuffer
$B004 SetArcRot $D804 GetROMFont
$B104 GetArcRot $D904 GetFontLore
$B204 SetSysFont
$B304 GetSysFont
$B404 SetVisRgn
$B504 GetVisRgn
$B604 SetintUse

D-4 Appendix D: List of Routines by Tool Set Number and Routine Number

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Event Manager Sound Tool Set SANE Tool Set
(Chapter 7) (Chapter 21) (Chapter 18)
$0106 EMBootinit $0108 SoundBootinit $010A SANEBootinit
$0206 EMStartUp $0208 SoundStartUp $020A SANEStartUp
$0306 EMShutDown $0308 SoundShutDown $030A SANEShutDown
$0406 EMVersion $0408 SoundVersion $040A SANEVersion
$0506 EMReset $0508 SoundReset $050A SANEReset
$0606 EMStatus $0608 SoundToolStatus $060A SANEStatus
$0906 Do Windows $0908 W riteRamBlock $090A SANEFP816
$0A06 GetNextEvent $0A08 ReadRamBlock $0AOA SANEDecStr816
$0B06 EventAvail $0B08 GetTableAddress $0BOA SANEElems816
$0C06 GetMouse $0C08 GetSoundVolume
$0D06 Button $0D08 SetSoundVolume Integer Math Tool Set

(Chapter 9)
$0E06 StillDown $0E08 FFStartSound $010B IMBootinit
$0F06 WaitMouseUp $0F08 FFStopSound $020B IMStartUp
$1006 TickCount $1008 FFSoundStatus $030B IMShutDown
$1106 GetDblTime $1108 FFGeneratorStatus $040B IMVersion
$1206 GetCaretTime $1208 SetSoundMIRQV $050B IMReset
$1306 SetSwitch $1308 SetUserSoundIRQV $060B IMStatus
$1406 PostEvent $1408 FFSoundDoneStatus $090B Multiply
$1506 FlushEvents $0AOB SDivide
$1606 Apple Desktop Bus Tool Set GetOSEvent (Chapter 3) $OBOE UDivide
$1706 OSEventA vail $0109 ADBBootinit $0COB LongMul
$1806 SetEventMask $0209 ADBStartUp $0DOB LongDivide
$1906 FakeMouse $0309 ADBShutDown $0EOB FixRatio
Scheduler $0409 ADBVersion $0FOB FixMul
(Chapter 19) $0509 ADBReset $100B FracMul
$0107 SchBootinit $0609 ADBStatus $110B FixDiv
$0207 SchStartUp $0909 Sendlnfo $120B FracDiv
$0307 SchShutDown $0A09 ReadKeyMicroData $130B FixRound
$0407 Sch Version $0B09 ReadKeyMicroMem $140B FracSqrt
$0507 SchReset $0D09 AsyncAD BReceive $150B FracCos
$0607 SchStatus $0E09 SyncAD BReceive $160B FracSin
$0907 SchAddTask $0F09 Abson $170B FixATan2
$0A07 SchFlush $1009 AbsOff $180B HiWord

$1109 ReadAbs $190B LoWord
$1209 GetAbsScale $1AOB Long2Fix
$1309 SetAbsScale $1BOB Fix2Long
$1409 SRQPoll $1COB Fix2Frac
$1509 SRQRemove

(continued) $1609 ClearSRQTable

Appendix D: List of Routines by Tool Set Number and Routine Number D-5

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Integer Math Tool Set $1AOC WriteLine $1FOE End Update
(Chapter 9) $1BOC ErrWriteLine $200E GetWMgrPort
$1DOB Frac2Fix $1COC WriteString $210E PinRect
$1EOB Fix2X $1DOC ErrWriteString $220E Hilite Window
$1FOB Frac2X $1EOC TextWriteBlock $230E ShowHide
$200B X2Fix $1FOC ErrWriteBlock $240E BringToFront
$210B X2Frac $200C WriteCString $250E Wind.New Res
$220B Int2Hex $210C ErrWriteCString $260E TrackZoom
$230B Long2Hex $220C ReadChar $270E Zoom Window
$240B Hex2Int $230C TextReadBlock $280E SetWRefCon
$250B Hex2Long $240C ReadLine $290E GetWRefCon
$260B Int2Dec $2AOE GetNextWindow
$270B Long2Dec Window Manager $2BOE GetWKind
$280B Dec2Int (Chapter 25)

$2COE GetWFrame
$290B Dec2Long $010E WindBootinit

$020E WindStartUp $2DOE SetWFrame
$2AOB Hexit $2EOE $030E WindShutDown GetStructRgn

Text Tool Set $040E WindVersion $2FOE GetContentRgn
(Chapter 23) $050E WindReset $300E GetU pdateRgn
$010C TextBootinit $060E WindStatus $310E GetDefFroc
$020C TextStartUp $090E NewWindow $320E SetDefFroc
$030C TextShutDown $0AOE CheckUpdate $330E GetWControls
$040C TextVersion $OBOE Close Window $340E SetOriginMask
$050C TextReset $0COE Desktop $350E GetinfoRefCon
$060C TextStatus $0DOE SetWTitle $360E SetinfoRefCon
$090C SetinGlobals $0EOE GetWTitle $370E GetZoomRect
$0AOC SetOutGlobals $0FOE SetFrameColor $380E SetZoomRect
$0BOC SetErrGlobals $100E GetFrameColor $390E RefreshDesktop
$0COC GetinGlobals $110E SelectWindow $3AOE InvalRect
$0DOC GetOutGlobals $120E Hide Window $3BOE InvalRgn
$0EOC GetErrGlobals $130E ShowWindow $3COE ValidRect
$0FOC SetinputDevice $140E SendBehind $3DOE ValidRgn
$100C SetOutputDevice $150E FrontWindow $3EOE GetContentOrigin
$110C SetErrorDevice $160E SetinfoDraw $3FOE SetContentOrigin
$120C GetinputDevice $170E FindWindow $400E GetDataSize
$130C GetOutputDevice $180E TrackGoA way $410E SetDataSize
$140C GetErrorDevice $190E Move Window $420E GetMaxGrow
$150C InitTextDev $1AOE Drag Window $430E SetMaxGrow
$160C CtlTextDev $1BOE GrowWindow $440E GetScroll
$170C StatusTextDev $1COE Size Window $450E SetScroll
$180C WriteChar $1DOE TaskMaster $460E GetPage
$190C ErrWriteChar $1EOE Begin Update $470E SetPage

0-6 Appendix D: List of Routines by Tool Set Number and Routine Number

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Window Manager $160F GetMHandle Control Manager
(Chapter 25) $170F SetBarColors (Chapter 4)
$480E GetContentDra w $180F GetBarColors $0110 Ct!Bootlnit
$490E SetContentDraw $190F SetMTitleStart $0210 Ct!StartUp
$4AOE GetinfoDraw $1AOF GetMTitleStart $0310 Ct!ShutDown
$4BOE SetSysWindow $1BOF GetMenuMgrPort $0410 Ct!Version
$4COE GetSysWFlag $1COF CalcMenuSize $0510 Ct!Reset
$4DOE StartDrawing $1DOF SetMTitle Width $0610 Ct!Status
$4EOE SetWindowlcons $1EOF GetMTitle Width $0910 NewControl
$4FOE GetRectinfo $1FOF SetMenuFlag $0A10 DisposeControl
$500E StartlnfoD ra wing $200F GetMenuFlag $0B10 Kill Controls
$510E EndinfoDrawing $210F SetMenuTitle $0C10 SetCtlTitle
$520E GetFirstWindow $220F GetMenuTitle $0D10 GetCtlTitle
$530E WindDragRect $230F MenuGlobal $0E10 HideControl
$560E WindowGlobal $240F SetMitem $0F10 ShowControl
$570E SetContent0rigin2 $250F GetMitem $1010 DrawControls

Menu Manager $260F SetMitemFlag $1110 HiliteControl

(Chapter 13) $270F GetMitemFlag $1210 Ct!NewRes

$010F MenuBootinit $280F SetMitemB!ink $1310 Find Control

$020F MenuStartU p $290F MenuNewRes $1410 TestControl

$030F MenuShutDown $2AOF DrawMenuBar $1510 TrackControl

$040F Menu Version $2BOF Menu Select $1610 MoveControl

$050F MenuReset $2COF HiliteMenu $1710 DragControl

$060F MenuStatus $2DOF NewMenu $1810 SetCtlicons

$090F MenuKey $2EOF DisposeMenu $1910 SetCt!Value

$0AOF GetMenuBar $2FOF InitPalette $1A10 GetCtlValue

$0BOF MenuRefresh $300F EnableMitem $1B10 SetCt!Params

$0COF FlashMenuBar $310F DisableMitem $1C10 GetCt!Params

$0DOF InsertMenu $320F CheckMitem $1D10 DragRect

$0EOF DeleteMenu $330F SetMitemMark $1E10 GrowSize

$0FOF InsertMitem $340F GetMitemMark $1F10 GetCtlDPage

$100F DeleteMitem $350F SetMitemStyle $2010 SetCtlAction

$110F GetSysBar $360F GetMitemStyle $2110 GetCtlAction

$120F SetSysBar $370F SetMenuID $2210 SetCt!RefCon

$130F FixMenuBar $380F Se tMitemID $2310 GetCt!RefCon

$140F CountMitems $390F SetMenuBar $2410 EraseControl

$150F NewMenuBar $3AOF SetMitemName $2510 DrawOneCtl

(continued)

Appendix D: List of Routines by Tool Set Number and Routine Number D-7

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routi ne

Loader (not documented In this Print Manager LlneEdlt Tool Set
manual; see Apple I/GS ProDOS 16 (Chapter 15) (Chapter l 0)
Reference) $0113 PMBootinit $0114 LEBootinit
$0111 Loaderinitialization $0213 PMStartUp $0214 LEStartUp
$0211 LoaderStartUp $0313 PMShutDown $0314 LEShutDown
$0311 LoaderShutDown $0413 PMVersion $0414 LEVersion
$0411 LoaderVersion $0513 PMReset $0514 LEReset
$0511 Loader Reset $0613 PMStatus $0614 LEStatus
$0611 LoaderStatus

0 $0913 PrDefault $0914 LENew
$0911 Initia!Load $0A13 Pr Validate $0A14 LED is pose
$0All Restart $0B13 PrStlDialog $0B14 LESetText
$0Bl 1 LoadSegNum $0C13 Pr] obDialog $0C14 LEidle
$0Cll UnloadSegNum $0D13 PrPixe!Map $0D14 LEC!ick
$0Dll LoadSegName $0E13 PrOpenDoc $0E14 LESetSelect
$0Ell UnloadSeg $0F13 PrC!oseDoc $0F14 LEActivate
$0Fll GetLoadSeginfo $1013 PrOpenPage $1014 LEDeactivate
$1011 GetUserID $1113 PrC!osePage $1114 LEKey
$1111 LGetPathname $1213 PrPicFile $1214 LECut
$1211 UserShutDown $1413 PrError $1314 LECopy

QulckDraw Auxiliary $1513 PrSetError $1414 LEPaste
(Chapter 17) $1613 PrChoosePrinter $1514 LEDelete
$0112 QDAuxBootinit $2313 PrDriverVer $1614 LEinsert
$0212 QDAuxStartUp $2413 PrPortVer $1714 LEUpdate
$0312 QDAuxShutDown $1814 LETextBox
$0412 QDAuxVersion $1914 LEFromScrap
$0512 QDAuxReset $1A14 LEToScrap
$0612 QDAuxStatus $1B14 LE Sera pH an die
$0912 Copy Pixels $1C14 LEGetScrapLen
$0A12 WaitCursor $1D14 LESetScra pLen
$0B12 Drawicon $1E14 LESetHilite

$1F14 LESetCaret
$2014 LETextBox2
$2114 LESetJust
$2214 LEGetTextHand
$2314 LEGetTextLen

D-8 Appendix D: List of Routines by Tool Set Number and Routine Number

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Dialog Manager $2715 SetDitemType Standard File Operations
(Chapter 6) $2815 GetDitemBox Tool Set (Chapter 22)
$0115 DialogBootinit $2915 SetDitemBox $0117 SFBootinit
$0215 DialogStartUp $2A15 GetFirstDitem $0217 SFStartUp
$0315 DialogShutDown $2B15 GetNextDitem $0317 SFShutDown
$0415 Dialog Version $2C15 Moda1Dialog2 $0417 SFVersion
$0515 DialogReset $2E15 GetDitem Value $0517 SFReset
$0615 DialogStatus $2F15 SetDitem Value $0617 SFStatus
$0915 ErrorSound $3215 GetNewModalDialog $0917 SFGetFile
$0A15 NewModalDialog $3315 GetNewDitem $0A17 SFPutFile
$0B15 NewModelessDialog $3415 GetAlertStage $0B17 SFPGetFile
$0C15 CloseDialog $3515 ResetAlertStage $0C17 SFPPutFile
$0D15 NewDitem $3615 DefaultFilter $0D17 SFAllCaps
$0E15 RemoveDitem $3715 GetDefButton Note Synthesizer (not $0F15 ModalDialog $3815 SetDefButton documented in this manual)
$1015 IsDialogEvent $3915 DisableDitem $0119 NSBootinit
$1115 DialogSelect $3A15 EnableDitem $0219 NSStartUp
$1215 DlgCut $0319 NSShutDown
$1315 DlgCopy Scrap Manager

$0419 NSVersion
$1415 (Chapter 20) DlgPaste

$0116 ScrapBootinit $0519 NSReset
$1515 DlgDelete $0619 $0216 ScrapStartUp NSStatus
$1615 DrawDialog

$0316 ScrapShutDown $0919 AllocGen
$1715 Alert

$0416 Scrap Version $0A19 DeallocGen
$1815 StopAlert

$0516 ScrapReset $0B19 NoteOn
$1915 NoteAlert $0C19
$1A15 $0616 ScrapStatus NoteOff

CautionAlert $0D19 AIJNotesOff
$1B15 ParamText $0916 UnloadScrap

$1C15 SetDAFont $0A16 LoadScrap (continued)
$1E15 GetControlDitem $0B16 ZeroScrap

$1F15 GetIText $0C16 PutScrap

$2015 SetIText $0D16 GetScrap

$2115 SelIText $0E16 GetScra pHandle

$2115 SelectIText $0F16 GetScrapSize

$2215 HideDitem $1016 GetScrapPath

$2315 ShowDitem $1116 SetScrapPath

$2415 FindDitem $1216 GetScrapCount

$2515 UpdateDialog $1316 GetScrapState

$2615 GetDitemType

Appendix D: List of Routines by Tool Set Number and Routine Number D-9

Table D-1 (continued)
Routines by tool set/routine number

Number Routine Number Routine Number Routine

Note Sequencer (not Font Manager List Manager
documented in this manual) (Chapter 8) (Chapter 11)
$011A SeqBootinit $011B FMBootlnit $011C ListBootinit
$021A SeqStartUp $021B FMStartUp $021C ListStartup
$031A SeqShutDown $031B FMShutDown $031C ListShutDown
$041A Seq Version $041B FMVersion $041C ListVersion
$051A SeqReset $051B FMReset $051C ListReset
$o61A SeqStatus $061B FMStatus $061C ListStatus
$091A Setlncr $091B CountFamilies $091C CreateList
$0A1A SeqBootinit $0A1B FindFamily $0A1C SortList
$0A1A Clear Iner $OB1B GetFamlnfo $OB1C NextMember
$OB1A GetTimer $OC1B GetFamNum $0C1C DrawMember
$0C1A GetLoc $0D1B AddFamily $0D1C SelectMember
$0D1A AllNotesOff $0E1B lnstallFont $0E1C GetListDefFroc
$0E1A SetTrklnfo $0F1B SetPurgeStat $0F1C ResetMember
$0F1A StartSeq $101B CountFonts $101C NewList
$101A StepSeq $111B FindFontStats
$111A StopSeq $121B LoadFont
$121A SetlnstTable $131B LoadSysFont
$131A Startlnts $141B AddFontVar
$141A Stoplnts $151B FixFontMenu

$161B ChooseFont
$171B ItemID2FamNum
$181B FMSetSysFont
$191B FMGetSysFID
$1A1B FMGetCurFID
$IB1B FamNum2ItemID

D-1 O Appendix D: List of Routines by Tool Set Number and Routine Number

Glossary

absolute: Said of a load segment or other
program code that must be loaded at a specific
address in memory and never moved. Compare
relocatable.

absolute addressing: An addressing mode in
which instruction operands are interpreted as
literal addresses.

absolute clamps: Values that establish the
minimum and maximum X and Y coordinates for
alternative pointing devices.

access, access byte: An attribute of a ProDOS
file that controls whether the file may be read
from, written to, renamed, or backed up.

accumulator: The register in a computer's
central processor or microprocessor where
most computations are performed. Also called
A register.

activate: To make active. A control or window
may be activated. Compare enable.

activate event: A window event that occurs when
a window is made either active or inactive.

active: Able to respond to the user's mouse or
keyboard actions. Controls and windows that are
active are displayed differently than inactive
items.

ADB: See Apple Desktop Bus.

ADB commands: Commands that are issued to
the Apple Desktop Bus. These are not the same as
Apple Desktop Bus Tool Set routines; rather, the
tool set routines often include an ADB command
as a parameter. The Apple Desktop Bus Tool Set
then interprets and issues the ADB command.

alert: A warning or report of an error in the form
of an alert box, a sound from the computer's
speaker, or both.

alert box: A special type of dialog box that
appears on the screen to give a warning or to
report an error message during use of an
application.

alert sound: A sound generated by a sound
procedure that emits a tone or sequence of tones
when the user is to be alerted of a condition.

alert stage: One of four stages that correspond to
consecutive occurrences of an alert.

alert template: A data structure that conatains
an alert ID, a RECT determining the alert window's
size and location, information about what should
happen at each stage of the alert, and a list of
pointers to the item templates.

alert window: The window in which an alert box
appears. One of the two predefined window
formats. Compare document window.

alternative pointing devices: A device, such as
a graphics tablet or trackball, used instead of the
mouse.

Apple Desktop Bus (ADB): An input bus, with
its own protocol and electrical characteristics, that
provides a method of connecting input devices
such as keyboards and mice with personal
computers.

Apple Desktop Bus Tool Set: The Apple IIGS

tool set that facilitates an application's interaction
with devices connected to the Apple Desktop Bus.

G-1

Apple key: A modifier key on the Apple IIGS
keyboard, marked with both an Apple icon and a
spinner; the icon used on the equivalent key on
some Macintosh keyboards. It performs the same
functions as the open Apple key on standard
Apple II machines.

AppleTalk network: A local area network
developed by Apple Computer, Inc.

Apple II: A family of computers, including the
original Apple II, the Apple II Plus, the Apple Ile,
the Apple Ile, and the Apple IIGS. Compare
standard Apple II.

Apple II Plus: A personal computer in the
Apple II family with expansion slots that allow the
user to enhance the computer's capabilities with
peripheral cards.

Apple Ile: A transportable personal computer in
the Apple II family, with a disk drive, serial ports,
and 80-column display capability built in.

Apple Ile: A personal computer in the Apple II
family, with seven expansion slots and an auxiliary
memory slot that allow the user to enhance the
computer's capabilities with peripheral memory
and video enhancement cards.

Apple IIGS: The most advanced computer in the
Apple II family. It features expanded memory,
advanced sound and graphics, and the Apple IIGS
Toolbox of programming routines.

Apple IIGS Programmer's Workshop: See
APW.

Apple IIGS Toolbox: An extensive set of routines
that facilitates writing desktop applications and
provides easy program access to many Apple IIGS
hardware and firmware features. Functions within
the toolbox are grouped into tool sets.

application: A stand-alone program that
performs a specific function, such as word
processing, drawing, or telecommunications.
Compare, for example, desk accessory, device
driver.

G-2 Glossary

application event: Any of four types of events
available for applications to define and respond to
as desired.

application prefix: The ProDOS 16 prefix
number 1 /. It specifies the directory of the
currently running application.

application window: A window in which an
application's document appears.

APW (Apple IIGS Programmer's
Workshop): A multilanguage development
environment for writing Apple IIGS desktop
applications.

APW Assembler: The 65816 assembly-language
assembler provided with the Apple IIGS
Programmer's Workshop.

APW C Compiler: The C-language compiler
provided with the Apple IIGS Programmer's
Workshop.

APW Shell: The programming environment of
the Apple IIGS Programmer's Workshop. It
provides facilities for file manipulation and
program execution, and supports shell
applications.

arbitrary mode: In the List Manager, a selection
mode that allows the user to select members in a
list without deselecting already-selected members.

arc: A portion of an oval; one of the fundamental
shapes drawn by QuickDraw II.

A register: See accumulator.

ascent: In a font, the distance between the base
line and the ascent line.

ascent line: A horizontal line that coincides with
the tops of the tallest characters in a font. See also
base line, descent line.

ASCII: Acronym for A merlcan Standard Code
for Injormatton Interchange, pronounced
"ASK-ee." A code in which the numbers from O to
127 stand for text characters. ASCII code is used to
represent text inside a computer and to transmit
text between computers or between a computer
and a peripheral device.

assembler: A language translator that converts a
program written in assembly language into an
equivalent program in machine language.

AsyncADBReceive completion routine: Used
in conjunction with the ADB Tool Set routine
AsyncADBReceive, the completion routine
obtains ADB data from a buffer. Compare SRQ
list completion routine.

attributes word: Determines how memory
blocks are allocated and maintained. Most of the
attributes are defined at allocation time and can't
be changed after that; other attributes can be
modified after allocation.

~uto-~ey: A keyboard feature and an event type,
m which a key being held down continuously is
interpreted as a rapid series of identical
keystrokes.

auxID: A subfield of the user ID. An application
may place any value it wishes into the au:x!D fa:ld.

auxiliary type: A secondary classification of
ProDOS files. A file's auxiliary-type field may
contain information of use to the applications that
read it. Compare file type.

available font: A font that the Font Manager can
use because the font is the ROM font, or a font in
the FONTS subdirectory, or a font that the
application has added with the Font Manager
routine AddFontVar.

background: The pixels within a character or
other screen object that are not part of the object
itself.

background color: The color of background
pixels in text; by default it is black.

background pattern: The pattern QuickDraw II
uses to erase objects on the screen.

background pixels: In a character image, the
pixels that are not part of the character itself; that
is, all pixels in the character bounds rectangle that
are not foreground pixels.

background procedure: A procedure run by the
Print Manager whenever the Print Manager has
directed output to the printer and is waiting for the
printer to finish.

bank: A 64K (65,536-byte) portion of the
Apple IIGS internal memory. An individual bank is
specified by the value of the 65C816
microprocessor's bank register.

bank $00: The first bank of memory in the
Apple IIGS. In emulation mode, it is equivalent to
matn memory in an Apple Ile or Apple Ile
computer.

base family: A font family is a base family if it is
the ROM font or if a plain-styled example of the
family can be found among the fonts in the FONTS
subdirectory.

base height: In the LineEdit Tool Set the
distance between the top of the destindtion
rectangle and the base line. This controls where
the text is drawn.

base lit.ie: A horizontal line that coincides with
the bottom of the main body of each character in a
font. Character descenders extend below the base
line.

BASIC: Acronym for Begtnners All-purpose
Symbolic Instructton Code. BASIC is a high-level
programming language designed to be easy to
learn.

best-flt font algorithm: The algorithm that the
Font Manager routine InstallFont uses to look for a
font that matches a given set of specifications.

bit: A contraction of binary digit, the smallest
representation of data in a digital computer.

Glossary G-3

bit plane: A method of representing images in
computer memory. In a bit plane, consecutive bits
in memory specify adjacent pixels in the image; if
more than one bit is required to completely
specify the state of a pixel, more than one bit
plane is used for the image. Compare chunky
pixels.

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous region of
computer memory of arbitrary size, allocated by
the Memory Manager. Also called memory
block.

block device: A device that transfers data to or
from a computer in multiples of 1 block (512 bytes)
of characters at a time. Disk drives are block
devices. Also called block J/0 device.

block 1/0 device: See block device.

Boolean logic: A mathematical system in which
every expression evaluates to one of two values,
usually referred to as 'TRUE or FALSE.

Boolean variable: A variable that can have one
of two values, usually referred to as 'TRUE or
FALSE.

bottom scroll bar: The scroll bar the user selects
to scroll horizontally through the data in a
window.

boundary rectangle: A rectangle, defined as
part of a QuickDraw II loclnjo record, that
encloses the active area of the pixel image and
imposes a coordinate system on it. Its top left
corner is always aligned on the first pixel in the
pixel map.

boundsRect: The GrafPort field that defines the
port's boundary rectangle.

buffer: A holding area of the computer's
memory where information can be stored by one
program or device and then read, perhaps at a
different rate, by another; for example, a print
buffer.

G-4 Glossary

busy flag: A feature that informs the Scheduler
whether a currently needed resource is busy or
available .

button: (1) A pushbutton-like image in dialog
boxes where the user clicks to designate, confirm,
or cancel an action. See also check box, radio
button. (2) A button on a mouse or other pointing
device. See also mouse button.

byte: A unit of information consisting of 8 bits. A
byte can have any value between O and 255, which
may represent an instruction, a letter, a number, a
punctuation mark, or another character. See also
bit, kilobyte, megabyte.

C: A high-level programming language. One of
the languages available for the Apple IIGS
Programmer's Workshop.

cancel: To stop an operation, such as the setting
of page-setup values in a dialog box, without
saving any results produced up to that point.

Cancel: One of two predefined item ID numbers
for dialog box buttons (Cancel= 2). Compare OK.

caret: A symbol that indicates where something
should or will be inserted in text. On the screen it
designates the insertion point, and is usually a
vertical bar (I).

carry flag: A status bit in the microprocessor
indicating whether an accumulator calculation has
resulted in a carry out of the register. Also called
cjlag.

CDA: See classic desk accessory.

CDA menu: The menu on which classic desk
accessories are listed; the user selects the menu by
pressing Control-Apple-Escape. See also classic
desk accessory.

c flag: See carry flag.

character: (1) Any symbol that has a widely
understood meaning and thus can convey
information. Some characters-such as letters,
numbers, and punctuation-can be displayed on
the monitor screen and printed on a printer. Most
characters are represented in the computer as
1-byte values. (2) In QuickDraw II, a single ASCII
character.

character bounds rectangle: The rectangle that
determines the extent of the background pixels of a
character.

character bounds width: The width of a
/

character's character bounds rectangle.

character device: A device that transfers data to
or from a computer as a stream of individual
characters. Keyboards and printers are character
devices.

character image: The part of a font strike that
represents a character in a font.

character image width: The number of
columns in a character image.

character origin: The point on the base line
used as a reference location for drawing a
character.

character position: An index into LineEdit text,
with position O corresponding to the first
character.

character rectangle: A rectangle that encloses a
character image. Its width is equal to the image
width of the character; its height is equal to the
character height.

character width: The number of pixels the pen
position is to be advanced after the character is
drawn.

check box: A small box associated with an
option in a dialog box. When the user clicks the
check box, that may change the option or affect
related options. See also radio button.

Choose Printer dialog box: A Print Manager
dialog box that lets the user select a printer or port
for printing.

chunkiness: The number of bits required to
describe the state of a pixel in a pixel image.

chunky pixels: A method of representing
images in computer memory. In chunky pixel
organization, a number of consecutive bits in
memory combine to specify the state of a single
pixel in the image. Consecutive groups of bits (the
size of the group is equal to the image's
chunkiness) define adjacent pixels in the image.
Compare bit plane.

clamp values: The X- and Y-limits, in terms of
pixels, on cursor position controlled by mouse
movement.

classic desk accessory (CDA): Desk accessories
designed to execute in a nondesktop-, nonevent­
based environment. Compare new desk
accessory.

click: To position the pointer on something, and
then to press and quickly release the mouse or
alternative pointing device's button.

clip: To restrict drawing to within a particular
boundary; any drawing attempted outside that
boundary does not occur.

Clipboard: The holding place for the material the
user last cut or copied; a buffer area in memory.
Information on the Clipboard can be inserted
(pasted) into documents. In memory, the
contents of the clipboard are called the desk
scrap.

clipping region: The region to which an
application limits drawing in a GrafPort.

clock: (1) The timing circuit that controls
execution of a microprocessor. Also called system
clock. (2) An integrated circuit, often with battery­
backup memory, that gives the current date and
time.

Glossary G-5

close box: The small white box on the left side of
the title bar of an active window. Clicking it closes
the window.

color table: One table of 16 lookup tables in
Apple IIGS memory. The table lists the available
color values for a scan line.

compaction: The rearrangement of allocated
blocks in memory to open up larger contiguous
areas of free space.

compiler: A program that produces object files
(containing machine-language code) from source
files written in a high-level language such as C.
Compare assembler.

content region: The area in a window in which
your application presents information to the user.

control: An object in a window with which the
user, using the mouse, can cause instant action
with visible results or change settings to modify a
future action.

control definition procedure: A procedure
used to define the appearance and behavior of a
custom control.

Control Manager: The Apple IIGS tool set that
manages controls, which are objects on the screen
that the user can manipulate with the mouse to
cause instant action or change settings.

Control Panel: A desk accessory that lets the user
change certain system parameters, such as speaker
volume, display colors, and configuration of slots
and ports.

control record: A data structure that defines the
appearance and behavior of a control.

coordinate plane: A two-dimensional grid
defined by QuickDraw II. All drawing commands
are located in terms of coordinates on the grid.

coordinates: X and Y locations on the
QuickDraw II coordinate plane. Most QuickDraw II
routines accept and return coordinates in the
order (Y,X).

G-6 Glossary

copy: To duplicate something by selecting it and
choosing Copy from the Edit menu. A copy of the
selected portion is placed on the Clipboard,
without affecting the original selection.

C string: An ASCII character string terminated
by a null character (ASCII value = 0). Compare
Pascal string.

C-type string: Same as C string.

current font: The font currently being used by
QuickDraw II to draw text.

cursor: A symbol displayed on the screen,
marking where the user's next action will take effect
or where the next character typed from the
keyboard will appear.

cursor record: The data structure that defines
the height and width of the cursor, the image of the
cursor, the mask controlling the appearance of the
cursor, and the hot spot defining where the image
of the cursor will be placed by the mouse.

cut: To remove something by selecting it and
choosing Cut from the Edit menu. The cut portion
is placed on the Clipboard.

data area: The name for a document as viewed in
a window. The data area is the entire document,
only a portion of which (the visible region) may be
seen in the window at any one time.

data bank register: A register in the 65C816
processor that contains the high-order byte of the
24-bit address that references data in memory.

data structure: A specifically formatted item of
data or a form into which data may be placed.

DB register: See data bank register.

dead character: A character with a character
width of 0.

default button: The button in a dialog box whose
action will be executed if the user presses the
Return key.

default prefix: The pathname prefix attached by
ProDOS 16 to a partial pathname when no prefix
number is supplied by the .application. The default
prefix is equivalent to prefix number O / .

dereference: To substitute a pointer for a
memory handle, or a value for a pointer. When
you dereference a memory block's handle, you
access the block directly (through its master
pointer) rather than indirectly (through its
handle) .

descender: Any part of a character that lies
below the base line.

descent: In a font, the distance between the base
line and the descent line.

descent line: A horizontal line that coincides
with the bottoms of character descenders (such as
the tail on a lowercase "p") that extends farthest
below the base line. See also ascent line, base
height, font height.

desk accessory: A "mini-application" that is
available to the user regardless of whether another
application is running. The Apple IIGS supports
two types of desk accessories: classic desk
accessories and new desk accessories.

desk accessory event: An event that occurs
whenever the user presses Control-Apple-Escape
to invoke a classic desk accessory.

Desk Accessory menu: The menu whose title is
a colored apple symbol.

Desk Manager: The Apple IIGS tool set that
executes desk accessories and enables applications
to support them.

desk scrap: A piece of data, maintained by the
Scrap Manager, taken from one application and
available for insertion into another.

desktop: The visual interface between the
computer and the user- the menu bar and the gray
(or solid-colored) area on the screen. In many
applications the user can have a number of
documents on the desktop at the same time.

desktop user interface: See desktop.

destination location: The location (memory
buffer or portion of the QuickDraw II coordinate
plane) to which data such as text or graphics are
copied. See also destination rectangle.

destination rectangle: (1) The rectangle (on
the QuickDraw II coordinate plane) in which text
or graphics are drawn when transferred from
somewhere else . Compare source rectangle.
(2) In LineEdit, the rectangle that determines
where the text will be drawn.

device: A piece of hardware used in conjunction
with a computer and under the computer's
control. Also called peripheral devtce because
such equipment is often physically separate from,
but attached to, the computer.

device driver: A program that handles the
transfer of data to and from a peripheral device,
such as a printer or disk drive.

device driver event: An event generated by a
device driver.

dial: An indicator on the screen that displays a
quantitative setting or value. Usually found in
analog form, such as a fuel gauge or a
thermometer. A scroll bar is a standard type of
dial.

dialog: See dialog box.

dialog box: A box on the screen that contains a
message requesting more information from the
user. See also alert box.

Dialog Manager: The Apple IIGS tool set that
manipulates dialog boxes and alerts, which appear
on the screen when an application needs more
information to carry out a command or when the
user needs to be notified of an important situation.

dialog pointer: A pointer to a dialog's GrafPort;
equivalent to the window pointer for the dialog
box.

dialog record: Information describing a dialog
window that is maintained by the Dialog Manager.

Glossary G-7

dialog template: A record that contains
information about a dialog to be created.

dialog window: The window in which a dialog
box appears.

digital oscillator chip (DOC): An integrated
circuit in the Apple IIGS that contains 32 digital
oscillators, each of which can generate a sound
from stored digital waveform data.

dim: On the Apple IIGS desktop, to display a
control or menu item in gray rather than black, to
notify the user that the item is inactive.

direct page: A page (256 bytes) of bank $00 of
Apple IIGS memory, any part of which can be
addressed with a short Cl -byte) address because its
high-order address byte is always $00 and its
middle address byte is the value of the 65C816
direct register. Co-resident programs or routines
can have their own direct pages at different
locations. The direct page corresponds to the 6502
processor's zero page. The term direct page is
often used informally to refer to any part of the
direct-page/stack space. Compare zero page.

direct-page/stack segment: A program
segment that is used to initialize the size and
contents of an application's stack and direct page.

direct-page/stack space: A single block of
memory that contains an application's stack and
direct page.

direct register: A hardware register in the
65C816 processor that specifies the start of the
direct page.

disable: To make unresponsive to user actions. A
dialog box control that is disabled does nothing
when selected or manipulated by the user. In
appearance, however, it is identical to an enabled
control. Compare inactive.

disabled menu: A menu that can be pulled
down, but in which items are dimmed and not
selectable.

G-8 Glossary

display mode: A specification for the way in
which a video display functions, including such
parameters as text or graphics display, available
colors, and number of pixels. The Apple IIGS has
two text display modes (40 column and 80
column), two standard Apple II graphics display
modes (320 mode and 640 mode), and two new
Super Hi-Res graphics display modes.

display rectangle: A rectangle that determines
where an item is displayed within a dialog box.

dispose: To permanently deallocate (a memory
block). The Memory Manager disposes of a
memory block by removing its master pointer.
Any handle to that pointer will then be invalid.
Compare purge.

dithering: A technique for alternating the values
of adjacent pixels to create the optical effect of
intermediate values. Dithering can give the effect
of shades of gray on a black-and-white display, or
more colors on a color display.

dividing line: A line that divides groups of items
in a menu; such a line uses the space of an entire
item and requires an item record. Compare
underline.

DOC: See digital oscillator chip.

document: A file created by an application.

document window: A window that displays a
document. One of the two predefined window
formats . Compare alert window.

double-click: To position the pointer where you
want an action to take place, and then press and
release the mouse button twice in quick succession
without moving the mouse.

draft printing: The print method that the
LaserWriter uses. QuickDraw II calls are converted
directly into command codes the printer
understands, which are then immediately used to
drive the printer. Compare spool printing.

drag: To position the pointer on something,
press and hold the mouse button, move the
mouse, and release the mouse button. When you
release the mouse button, you either confirm a
menu selection or move an object to a new
location.

drag region: A region in a window (usually on
the title bar) in which the mouse pointer must be
placed before the user can drag the window.

draw: In QuickDraw II, to color pixels in a pixel
image.

drawing environment: The complete
description of how and where drawing may take
place. Every open window on the Apple IIGS
screen is associated with a GrafPort record, which
specifies the window's drawing environment.
Same as graphic port, port.

drawing mask: An 8-bit by 8-bit pattern that
controls which pixels in the QuickDraw II pen will
be modified when the pen draws.

drawing mode: One of 16 possible interactions
between pixels in QuickDraw II's pen pattern and
pixels already on the screen that fall un~er the
pen's path. In modeCopy mode, for example,
pixels already on the screen are ignored. In
modeXOR mode, on the other hand, bits in pixels
on the screen are XOR'd with bits in pixels in the
pen; the resulting pixels are drawn on the screen.
See also pen mode, text mode.

drawing pen: See pen.

driver: See device driver.

dynamic segment: A load segment capable of
being loaded during program execution.
Compare static segment.

edit record: A complete text-editing
environment in the LineEdit Tool Set, which
includes the text to be edited, the Grafl>ort and
rectangle in which to display the text, the
arrangement of the text within the rectangle, and
other editing and display information.

e flag: One of three flag bits in the 65C816
processor that programs use to control the
processor's operating modes. The setting of the
e flag determines whether the processor is in
native mode (6502) or emulation mode (65816).
See also m flag, x flag.

empty handle: A handle pointing to a NIL
master pointer.

emulate: To operate in a way identical to a
different system. For example, the 65C816
microprocessor in the Apple IIGS can carry out all
the instructions in a program originally written for
an Apple II that uses a 6502 microprocessor, thus
emulating the 6502.

emulation mode: The 8-bit configuration of the
65C816 processor in which it functions like a 6502
processor in all respects except clock speed.

enable: To make responsive to user
manipulation. A dialog or menu that is enabled
can be selected by the user. Enabling does not
affect how an item is displayed. Compare
activate.

end-of-file: See EOF.

EOF (end-of-file): The logical size of a ProDOS
16 file; it is the number of bytes that may be read
from or written to the file.

erasing: In QuickDraw II, to color an area with
the background pattern.

error: The state of a computer after it has
detected a fault in one or more commands sent to
it. Also called error condttton.

error condition: See error.

error message: A message issued by the system
or application program when it has encountered
an abnormal situation or an error in data.

event: A notification to an application of some
occurrence (such as an interrupt generated by a
keypress) that the application may want to respond
to.

Glossary G-9

event code: A numeric value assigned to each
event by the Event Manager. Compare task code.

event-driven program: A program that
responds to user inputs in real time by repeatedly
testing for events. An event-driven program does
nothing until it detects an event such as a click of
the mouse button.

Event Manager: The Apple IIGS tool set that
detects events as they happen and passes the
events to the application or appropriate event
handler, such as TaskMaster or GetNextEvent.

event mask: A parameter passed to an Event
Manager routine to specify which types of events
the routine should apply to.

event message: A field in the event record that
contains additional information about the event.

event queue: A list of pending events
maintained by the Event Manager.

event record: The internal representation of an
event, through which your program learns all
pertinent information about that event.

event type: The type of event reported to the
Event Manager.

execution environment: See operating
environment.

execution mode: One of two general states of
execution of the 65C816 processor: native mode
and 6502 emulation mode.

expansion slot: See slot.

Extended value: An 80-bit signed floating-point
value with 64 bits of fraction.

extended task event record: A data structure
based on the event record that contains
information used and returned by TaskMaster.

FALSE: Zero. The result of a Boolean operation.
The opposite of 1RUE.

G-1 O Glossary

family name: The name identifying a font
family. For example, the font family named
Helvetica includes 10-point Helvetica, 12-point
Helvetica Bold, and 36-point Helvetica
Underlined. See also font family.

family number: The number identifying a font
family. There is a one-to-one correspondence
between family number and family name; that is,
any two fonts with the same family number should
have the same family name.

FamSpecBits: A bit flag in the Font Manager that
restricts the range of font families available to a
calling routine.

FamStatBits: A bit flag in the Font Manager that
reports on the status of a font family.

file: Any named, ordered collection of
information stored on a disk. Application
programs and operating systems on disks are
examples of files; so also are text or graphics
materials created by applications and saved on
disks. Text and graphics files are also called
documents .

filename: The string of characters that identifies
a particular file within its directory. ProDOS
filenames may be up to 15 characters long.
Compare pathname.

file type: An attribute of a ProDOS file that
characterizes its contents and indicates how the
file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often
displayed as three-character or single-word
mnemonic codes. Compare auxiliary type.

filllng: In QuickDraw II, using a specified pattern
and the drawing mask to fill the interior of a shape.

fill mode: A display option in Super Hi-Res 320
mode. In fill mode, pixels in memory with the
value O are automatically assigned the color of the
previous nonzero pixel on the scan line; the
program thus need assign explicit pixel values only
to change pixel colors.

filter procedure: A procedure that allows the
application programmer to control the types of
events handled by the Dialog Manager.

firmware: Programs stored permanently in
ROM; most provide an interface to system
hardware. Such programs (for example, the
Monitor program) are built into the computer at
the factory. They can be executed at any time but
cannot be modified or erased. Compare
hardware, software.

fixed: Not movable in memory once allocated.
Program segments that must not be moved are
placed in fixed memory blocks. Also called
tmmovable. The opposite of movable.

fixed address: A memory block that must be at a
specified address when allocated.

fixed bank: A block of memory that must start in
a specified bank.

Fixed value: A 32-bit signed value with 16 bits of
fraction .

flag: A variable whose value (usually 1 or 0,
standing for TRUE or FALSE) indicates whether
some condition holds or whether some event has
occurred. A flag is used to control the program's
actions at some later time.

folder: The visual representation of a
subdirectory. See also subdirectory.

font: In typography, a complete set of type in
one size and style of character. In computer usage,
a collection of letters, numbers, punctuation
marks, and other typographical symbols with a
consistent appearance; the size and style can be
changed readily. See also font scaling.

font bounds rectangle: The smallest rectangle
that would enclose all the pixels of every character
in a font; that is, the rectangle that is the union of
all the character bounds rectangles of the
characters in the font.

font family: All fonts that share the same name
but may vary in size or style. For example, all fonts
named Helvetica are in the same family, even
though that family contains Helvetica, Helvetica
Narrow, and Helvetica Bold.

font height: The vertical distance from a font's
ascent line to its descent line.

font ID: A number that specifies a font by family,
style, and size.

font ID record: A record containing the number
that specifies a font by fimily, style, and size.

Font Manager: The Apple IIGS tool set that
allows applications to use different fonts.

font rectangle: The smallest rectangle that
would completely enclose all the foreground
pixels of the characters of a font if the characters
were drawn so that their character origins
coincided.

font scaling: A process by which the Font
Manager creates a font at one size by enlarging or
reducing characters in an existing font of another
size .

font size: The size of a font in points, from 1 to
255. The Font Manager defines the font size as a
byte; QuickDraw II and the Apple IIGS font record
define the font size as a word.

FontSpecBits: A bit flag in the Font Manager that
restricts the range of fonts available to a calling
routine.

FontStatBits: A bit flag in the Font Manager that
reports on the status of a font.

font strike: A 1-bit-per-pixel pixel image
consisting of the character images of every defined
character in the font, placed sequentially in order
of increasing ASCII code.

font style: The style in which a font was
designed. The Font Manager defines the style style
as a byte; QuickDraw II and the Apple IIGS font
record define the font style as a word.

Glossary G-11

font substitution: An option in the LaserWriter
style dialog box in the Print Manager, font
substitution tells the system to substitute one font
for another if the specified font is not available on
the LaserWriter.

foreground color: The color of the foreground
pixels in text; by default it is white.

foreground pixels: In a character image, the
pixels corresponding to the character itself; that
is, the bits set to 1 in the image.

FPT: See function pointer table.

Frac value: A 32-bit signed value with 30 bits of
fraction.

fragmentation: A condition in which free
(unallocated) portions of memory are scattered
due to repeated allocation and deallocation of
blocks by the Memory Manager.

frame region: The part of a window that
surrounds the window's content region and
contains standard window controls.

framing: In QuickDraw II, using the current pen
size, pen pattern, drawing mask, and pen mode to
draw an outline of a shape.

full native mode: See native mode.

full pathname: The complete name by which a
file is specified, starting with the volume directory
name. A full pathname always begins with a slash
(/) because a volume directory name always
begins with a slash. See also pathname.

function pointer table (FP'f): A table,
maintained by the Tool Locator, that points to all
routines in a given tool set.

GCB: See generator control block.

general logic unit: See GLU.

generator: In the swap mode of the DOC, a
functional unit formed from a pair of oscillators.

G-12 Glossary

generator control block (GCB): A 16-byte
block in the sound routines' work area that controls
one generator.

GetNextEvent: The Event Manager call that an
application can make on each cycle through its
main event loop. Compare TaskMaster.

global coordinates: The coordinate system
assigned to a pixel image (such as screen memory)
that QuickDraw II draws to. In global coordinates,
the boundary rectangle's origin (top left corner)
has the value (0,0). Compare local coordinates.

GLU (general logic unit): A class of custom
integrated circuits used as interfaces between
different parts of the computer.

go-away region: A region in a window frame,
corresponding to the close box. Clicking inside
this region of the active window makes the window
close or disappear.

GratPort: A data structure (record) that specifies
a complete drawing environment, including such
elements as a pixel image, boundaries within
which to draw, a character font, patterns for
drawing and erasing, and other pen
characteristics .

graphic port: A specification for how and where
QuickDraw II draws. A graphic port is defined by
its GrafPort record; an application may have more
that one graphic port open at one time, each
defined by its own GrafFort. Same as drawing
environment.

grow image: A dotted outline of an entire
window plus the lines delimiting the title bar, size
box, and scroll bar areas. The image can be pulled
around to follow the movements of the mouse until
the mouse button is released.

grow region: A window region in which dragging
changes the size of the window.

handle: See memory handle.

hardware: In computer terminology, the
machinery that makes up a computer system.
Compare firmware, software.

Heartbeat routines: Routines that execute at the
heartbeat interrupt signal, during the vertical
blanking interval (every 1/ 60 of a second).

hex: See hexadecimal.

hexadecimal, hex: The representation of
numbers in the base-16 system, using the ten digits
0 through 9 and the six letters A through F. Each
hexadecimal digit corresponds to a sequence of
four binary digits, or bits. Hexadecimal numbers
are usually preceded by a dollar sign ($).

hide: To make invisible on the screen (but not
necessarily to discard).

highlight: To make something visually distinct.
For example, when a button on a dialog box is
selected, it appears as light letters on a dark
background, rather than dark on light. An active
window or control is highlighted differently than
an inactive one.

horizontal blanking: The interval between the
drawing of each scan line on a video display.

hot spot: The interval between the drawing of
each scan line on a video display.

Human Interface Guidelines: Apple
Computer's set of conventions and suggestions for
writing desktop programs. Programs that follow
the Human Interface Guidelines: The Apple
Desktop Interface present a consistent and
friendly interface to users.

icon: An image that graphically represents an
object, a concept, or a message.

i flag: A bit in the 6SC816 microprocessor's
Processor Status register that disables interrupts if
set to 1.

image: A representation of the contents of
memory. A code image consists of machine­
language instructions or data that may be loaded
unchanged into memory. See also pixel image.

image pointer: In QuickDraw II, the pointer to
the first byte of a pixel image.

image width: (1) Part of the QuickDraw II
locinfo record that specifies the width of each line
of a pixel image; the width must be an even
multiple of 8 bytes. (2) For characters, same as
character image width.

immovable: See fixed.

inactive: Said of controls that have no meaning
or effect in the current context, such as an Open
button when no document has been selected to be
opened. These inactive controls are not affected
by the user's mouse action and are dimmed on the
screen. Compare disable.

index register: A register in a computer
processor that holds an index for use in indexed
addressing. The 6502 and 6SC816
microprocessors used in the Apple II family of
computers have two index registers, called the
X regtster and the Y register.

indicator: On a dial type of control, the moving
part that displays the current setting.

information bar: An optional component of a
window. If present, the information bar appears
just below the title bar. It may contain any
application-defined information.

initialization segment: A segment in an initial
load file that is loaded and executed
independently of the rest of the program. It is
commonly executed first, to perform any
initialization that the program may require.

input/output: See 1/0.

insertion point: The place in a document where
something will be added; it is selected by clicking
and is normally represented by a blinking vertical
bar.

Integer value: A 16-bit signed or unsigned
value.

Integer Math String: An ASCII string with no
length indication supplied by the string itself.

Glossary G- 13

Integer Math Tool Set: The Apple IIGS tool set
that performs simple mathematical functions on
integers and other fixed-point numbers and
converts numb~rs to their ASCII string­
equivalents.

interface library: A set of variable- and data­
structure definitions that link a program (such as a
C application) with software written in another
language (such as the Apple IIGS Toolbox).

interrupt: A temporary suspension in the
execution of a main program that allows the
computer to perform some other task, typically in
response to a signal from a peripheral device or
other source external to the computer.

interrupt environment: The machine state,
including register length and contents, that the
interrupt handler executes within.

interrupt mode: A mode in which interrupts are
used to synchronize drawing with vertical
blanking.

inverting: In QuickDraw II, using the drawing
mask to invert the pixels in the interior of a shape.

1/0 (input/output): A general term that
encompasses input/output activity, the devices
that accomplish it, and the data involved.

1/0 space: The portion of the memory map in a
standard Apple II (and in banks $EO and $E 1 of an
Apple IIGS) with addresses between $COOO and
$CFFF. Programs perform I/0 by writing to or
reading from locations in this I/0 space.

item: A component of a dialog box, such as a
button, a text field, or an icon.

item descriptor: In a dialog box, a pointer or a
handle to additional information concerning a
dialog item.

item ID: A unique number that defines an item
in a dialog box and allows further reference to it.

item line: The line of text that defines a menu
item's name and appearance.

G-14 Glossary

item list: A list of information about all the items
in a dialog box or an alert box.

item template: A record that contains
information about the items in a dialog box.

item type: Identifies the type of dialog item,
usually represented by a predefined constant (such
as stat Text) or a series of constants.

item value: In a dialog box, additional
information concerning a dialog item.

job dialog box: A dialog box presented when the
user selects Print from the File menu.

job subrecord: A field in the print record that
contains information about a particular printing
job. See also print record.

journaling mechanism: A mechanism that can
separate the Event Manager from the user and feed
the manager events from a file.

JSL Oump to Subroutine Long): A 65816
assembly-language instruction that requires a long
(3-byte) address. JSL can be used to transfer
execution to code in another memory bank.

JSR Oump to Subroutine): A 6502 and 65816
assembly-language instruction that requires a
2-byte address.

Jump Table: (1) A table constructed in memory
by the System Loader from all Jump Table
segments encountered during a load. The Jump
Table contains all references to dynamic segments
that may be called during execution of the
program. (2) The mechanism the Sound Tool Set
uses to find a low-level sound routine.

Jump Table segment: A segment in a load file
that contains all references to dynamic segments
that may be called during execution of that load
file. The Jump Table segment is created by the
linker. In memory, the loader combines all Jump
Table segments it encounters into the Jump Table.

K: See kilobyte.

kerning: The situation that occurs when a
character has foreground pixels to the left of the
old pen position or to the right of the new pen
position or both. When kerning occurs, the
character images of adjacent characters may
overlap.

keyboard equivalent: The combination of the
Apple key and another key, used to invoke a menu
item from the keyboard.

key-down event: An event type caused by the
user pressing any character key on the keyboard or
keypad. The character keys include all keys except
Shift, Caps Lock, Control, Option, and Apple,
which are called modifier keys. Modifier keys are
treated differently and generate no keyboard
events of their own.

kilobyte (K): A unit of measurement consisting
of 1024 (210) bytes. In this usage, kilo (from the
Greek, meaning a thousand) stands for 1024. Thus,
64K memory equals 65,536 bytes. See also
megabyte.

landscape mode: A printing mode in which text
is printed top to bottom (that is, longways) on the
paper.

leading: Pronounced "LED-ing." The space
between lines of text. It is the number of pixels
vertically between the descent line of one
character and the ascent line of the character
immediately beneath it.

leftward kern: For characters, the distance in
pixels from the character origin to the left edge of
the character.

length byte: The first byte of a Pascal string. It
specifies the length of the string, in bytes.

library, library file: An object file containing
program segments, each of which can be used in
any number of programs. The linker can search
through the library file for segments that have
been referen-::ed in the program source file .

library file: See library.

limit rectangle: The rectangle that limits the
travel of a region that is being dragged with the
mouse .

line: In QuickDraw II, an infinitely thin graphic
object that is represented by its ends, which are
defined by two points.

LineEdit Tool Set: The Apple IIGS tool set that
provides simple text-editing functions . It is used
mostly in dialog boxes.

line height: The total amount of vertical space
from line to line in a text document. Line height is
the sum of ascent, descent, and leading.

list: As defined by the List Manager, a scrollable,
vertical arrangement of similar items on the
screen; the items are selectable by the user.

list control: A custom control created by the List
Manager.

list control record: A data structure that defines
the appearance of a list control after the control
has been created.

list record: A data structure that defines the
initial appearance of a list control.

List Manager: The Apple IIGS Tool set that allows
an application to present the user with a list from
which to choose (for example, the Font Manager
uses the List Manager to arrange lists of fonts).

local coordinates: A coordinate system unique
to each GrafPort and independent of the global
coordinates of the pixel image that the port is
associated with. For example, local coordinates
do not change as a window is dragged across the
screen; global coordinates do not change as a
window's contents are scrolled.

location table: In a font, an array of integers with
an entry for each character code.

loclnfo: Acronym for location information. The
data structure (record) that ties the coordinate
plane to an indvidual pixel image in memory.

Glossary G-15

lock: To prevent a memory block from being
moved or purged. A block may be locked or
unlocked by a call to the Memory Manager.
Compare unlock.

long, long word: On the Apple IIGS, a 32-bit
(4-byte) data type.

Longint value: A 32-bit signed or unsigned
value.

Macintosh: A family of Apple computers; for
example, the Macintosh 512K and the Macintosh
Plus. Macintosh computers have high-resolution
screens and use mouse devices for choosing
commands and for drawing pictures.

macro: A single keystroke or command that a
program replaces with several keystrokes or
commands. For example, the APW Editor allows
you to define macros that execute several editor
keystroke commands; the APW Assembler allows
you to define macros that execute instructions and
directives. Macros are almost like higher-level
l~nguage instructions, making assembly-language
programs easier to write and complex keystrokes
easier to execute.

macro library: A file of related macros.

main event loop: The central rou tine of an
event-driven program. During execution, the
program continually cycles through the main
event loop, branching off to handle events as they
occur and then returning to the event loop.

mainlD: A subfield of the user ID. Each running
program is assigned a unique main!D fie ld.

manager: See tool set.

mask: A parameter, typically one or more bytes
long, whose individual bits are used to set or block
particular features. See, for example, event
mask.

master color value: A 2-byte number that
specifies the relative intensities of the red, green,
and blue signals output by the Apple IIGS video
hardware.

G-16 Glossary

master pointer: A fixed location that always
contains the address of a specified block,
regardless of whether the block is moved. See also
memory handle.

master user ID: The value of a user ID
disregarding the contents of the au:x:ID field. If an
application allocates various memory blocks and
assigns them unique IDs consisting of au:x:ID
values added to its own user ID, then all will share
the same master user ID and all can be purged or
disposed with a single call.

Mb: See megabyte.

megabyte (Mb): A unit of computer memory or
disk drive capacity equaling 1,048,576 bytes.

megahertz (MHz): A unit of measurement of
frequency, equal to 1,000,000 hertz (cycles per
second).

memory attributes word: A word that
determines how a specified memory block is
allocated and maintained.

memory block: See block (2).

memory expansion card: A memory card that
increases Apple IIGS internal memory capacity
beyond 256K, up to 8 megabytes

memory fragmentation: See fragmentation.

memory handle: A number that identifies a
memory block. A handle is a pointer to a pointer;
it is the address of a master pointer, which in turn
contains the address of the block. Also called
simply handle.

Memory Manager: The Apple IIGS Tool set that
manages memory use. The Memory Manager
keeps track of how much memory is available and
allocates memory blocks to hold program
segments or data.

menu: A list of choices presented by a program,
from which the user can select an action. See also
pull-down menu.

menu bar: The horizontal strip at the top of the
screen that contains menu titles for the pull-down
menus.

menu bar record: A data structure that contains
the menu position, color, menu lists, item lists,
and other flags the Menu Manager needs to
manage menus.

menu definition procedure: A procedure used
to define the appearance and behavior of a custom
menu.

menu ID: A number in the menu record that
identifies an individual menu.

menu item: On a menu, the text of a command
or a line dividing groups of choices.

menu line: A line of text plus code characters
that defines the appearance of a particular menu
title.

Menu Manager: The Apple IIGS Tool Set that
maintains the pull-down menus and the items in
the menus.

menu record: A data structure that provides
information about one of the menus in a menu
bar.

m flag: One of three flags in the 65816
microprocessor's Processor Status register that
controls execution mode. When the m flag is set to
1, the accumulator is 8 bits wide; otherwise, it is 16
bits wide. See also e flag, x flag.

MHz: See megahertz.

microprocessor: A central processing unit that
is contained in a single integrated circuit. The
Apple JIGS uses a 65C816 microprocessor.

minimum blink interval: The minimum time
between blinks of the caret.

minimum version number: The minimum
version of a particular tool set that an application
needs to function.

minipalette: In Super Hi-Res 640 mode, a
quarter of the color table. Each pixel in 640 mode
can have one of four colors specified in a
mini palette.

Miscellaneous Tool Set: The Apple IIGS tool set
that includes mostly system-level routines that
must be available for other tool sets.

missing character: In a font, a character that
does not have a defined symbol.

missing symbol: In a font, the symbol
substituted for any ASCII value for which the font
does not have a defined symbol. In the Apple IIGS
system font, the missing symbol is a box
containing a question mark.

modal dialog box: A dialog box that puts the
machine in a state where the user cannot execute
functions outside of the dialog box until the dialog
box is closed. Compare modeless dialog box.

mode: A state of a computer or system that
determines its behavior. A manner of operating.

modeless dialog box: A dialog box that does
not require the user to respond before doing
anything else. Unlike a modal dialog box, it is
possible to keep working even if the box is still in
use. Compare modal dialog box.

modifier keys: The Shift, Caps Lock, Control,
Option, and Apple keys. Such keys do not generate
a keyboard event by themselves; rather, their
states are recorded whenever another event is
posted.

monospaced: Said of a font whose character
widths are all identical. Compare proportionally
spaced.

mouse: A small device the user moves around on
a flat surface next to the computer. The mouse
controls a pointer on the screen whose
movements correspond to those of the mouse.
The pointer selects operations, moves data, and
draws graphic objects.

Glossary G-17

mouse button: A button on a mouse device with
which the user selects objects on the screen.

mouse clamps: Values that establish the
minimum and maximum X and Y coordinates for
the mouse.

mouse-down: An action or an event, signifying
that the user has pressed the mouse button.

mouse-up: An action or an event, signifying that
the user has released the mouse button.

movable: Able to be moved to different memory
locations during program execution (a memory
block attribute). The opposite of fixed.

native mode: The 16-bit operating configuration
of the 65C816 microprocessor.

NDA: See new desk accessory.

new desk accessory (NDA): A desk accessory
designed .to execute in a desktop, event-driven
environment. Compare classic desk accessory.

NIL: A value of 0. A pointer is NIL if its value is all
zeros. A memory handle is NIL if the address it
points to is filled with zeros. Handles to purged
memory blocks are NIL.

nonspecial, normal memory: Memory that
has no special restrictions on it. On the
Apple IIGS, such memory includes banks $2-$DF
and parts of banks $EO and $El.

Note Sequencer: The Apple IIGS tool set that
makes it possible to play music asynchronously in
programs.

Note Synthesizer: An Apple IIGS tool set that
facilitates creation and manipulation of musical
notes.

null event: An event reported when there are no
other events to report.

object module format (OMF): The file format
used in Apple IIGS object files, library files, and
load files. Compare text file format.

G-18 Glossary

offset: The number of character positions or
memory locations away from a point of reference.

OK: One of two predefined item ID numbers for
dialog box buttons (OK = 1). Compare Cancel

OMF: See object module format.

operating environment: The overall hardware
and software setting within which a program runs.
Also called execution environment.

operating system: A general-purpose program
that organizes the actions of the various parts of
the computer and its peripheral devices. See also
disk operating system.

origin: (1) The first memory address of a
program or of a portion of one. The first
instruction to be executed. (2) The location (O,o)
on the QuickDraw II coordinate plane, in either
global coordinates or local coordinates. (3) The
top left corner of any rectangle (such as a
boundary rectangle or a port rectangle) in
QuickDraw IL (4) See character origin.

oscillator: A device that generates a vibration. In
the Apple IIGS digital oscillator chip, an oscillator
is an address generator that points to the next data
byte in memory that represents part of a particular
sound wave.

oval: A circle or an ellipse, one of the
fundamental classes of objects drawn by
QuickDraw II.

pack: To compress data into a smaller space to
conserve storage space.

page: (1) A portion of memory 256 bytes long
and beginning at an address that is an even
multiple of 256. Memory blocks whose starting
addresses are an even multiple of 256 are said to be
page aligned. (2) An area of main memory
containing text or graphic information being
displayed on the screen.

page-aligned: Said of a memory block that starts
at a memory address that is an even multiple of 256
(a memory block attribute). See also page (1).

paging region: In a scroll bar, the area a user
clicks to move the view of the data a page at a time.

painting: In QuickDraw II, using the current pen
pattern, drawing mask, and pen mode to fill the
interior of a shape.

palette: The full set of colors available for an
individual screen pixel.

parameter: A value passed to or from a function
or other routine.

parameter RAM: RAM on the Apple IIGS clock
chip. A battery preserves the clock settings and the
RAM contents when the power is off. Control
Panel settings are kept in battery RAM.

part code: A number between 1 and 255 that
stands for a particular part of a control. The
Control Manager uses part codes to allow different
parts of a control to respond in different ways.

partial pathname: A pathname that includes the
filename of the desired file but excludes the
volume directory name (and possibly one or more
of the subdirectories in the path). It is the part of a
pathname following a prefix; a prefix and a partial
pathname together constitute a full pathname. A
partial pathname does not begin with a slash
because it has no volume directory name.

Pascal: A high-level programming language.
Named for the philosopher and mathematician
Blaise Pascal.

Pascal string: An ASCII character string
preceded by a single byte whose numerical value is
the number of characters in the string. Compare
C string.

Pascal-type string: Same as Pascal string.

paste: To place the desk scrap (contents of the
Clipboard-whatever was last cut or copied) at the
insertion point.

pathname: A name that specifies a file. It is a
sequence of one or more filenames separated by
slashes, tracing the path through subdirectories
that a program must follow to locate the file. See
also full pathname, partial pathname, prefix.

pathname prefix: See prefix.

pattern: An 8-by-8 pixel image, used to define a
repeating design (such as stripes) or color.

PB register: See program bank register.

PC register: A register within the 65816
microprocessor that keeps track of the memory
address of the next instruction to be executed. PC
stands for program counter.

pen: The conceptual tool with which QuickDraw II
draws shapes and characters. Each GrafFort has its
own pen.

pen location: The position (on the coordinate
plane) at which the next character or line will be
drawn.

pen mode: One of several Boolean operations
that determine how the pen pattern is to affect an
existing image. Compare text mode.

pen pattern: See pattern.

pen size: The size of the rectangle that will be
used as the drawing pen.

peripheral card: A hardware device placed
inside a computer and connected to one of the
computer's peripheral expansion slots. Peripheral
cards perform a variety of functions, from
controlling a disk drive to providing a
clock/calendar.

peripheral device: See device.

picture: A saved sequence of QuickDraw II
drawing commands (and, optionally, picture
comments) that you can play back later with a
single procedure call; also, the image resulting
from these commands.

Glossary G-19

pinning: The process of assigning positive
overflows to the largest positive representable
value and negative overflows to the largest negative
representable value.

pixel: A contraction of picture element, the
smallest dot you can draw on the screen. Also a
location in video memory that corresponds to a
point on the graphics screen when the viewing
window includes that location. In the Super Hi-Res
display on the Apple IIGS, each pixel is
represented by either 2 or 4 bits. See also pixel
image.

pixel image: A graphics image picture consisting
of a rectangular grid of pixels.

plain-styled: Said of a font or character that is
not bold, italicized, underlined, or otherwise
styled apart from ordinary text.

plane: The front-to-back position of a window on
the desktop.

point: (1) A unit of measurement for type; 12
points equal 1 pica, and 6 picas equal 1 inch; thus,
1 point equals 1/ 72 inch. (2) A relative measure
(taken from the type measure) used to distinguish
font size on output devices. (3) In QuickDraw II,
the Y and X coordinates of a location on the
coordinate plane.

pointer: An item of information consisting of the
memory address of some other item. For
example, the 65C816 stack register contains a
pointer to the top of the stack.

pointing device: Any device, such as a mouse,
graphics tablet, or light pen, that can be used to
specify locations on the computer screen.

polygon: Any sequence of connected lines.

port: (1) A socket on the back panel of the
computer where the user can plug in a cable to
connect a peripheral device, another computer,
or a network. (2) A graphic port (Grafport).

portrait mode: A printing mode in which text
prints from left to right on the paper.

G-20 Glossary

port rectangle: A rectangle that describes the
active region of a Grafport's pixel map-the part
that QuickDraw II can draw into. The content
region of a window on the desktop corresponds to
the window's port rectangle.

portRect: The Grafport field that defines the
port's port rectangle.

post: To place an event in the event queue for
later processing.

prefix: A pathname starting with a volume name
and ending with a subdirectory name. It is the part
of a full pathname that precedes a partial
pathname; a prefix and a partial pathname
together constitute a full pathname. A prefix
always starts with a slash (/) because a volume
directory name always starts with a slash.

prestyled: Said of a font that has a certain style
or combination of styles built into the font's
design.

printer information subrecord: A data
structure within the print record that contains the
information needed for page composition.

printing loop: The page-by-page cycle that an
application goes through when it prints a
document.

Print Manager: The Apple IIGS tool set that
allows an application to use standard QuickDraw II
routines to print text or graphics on a printer.

print record: A record containing all the
information needed by the Print Manager to
perform a particular printing job.

private scrap: A buffer (and its contents) set up
by an application for cutting and pasting,
analogous to but apart from the desk scrap.

ProDOS: Acronym for Professional Disk
Operating System. A family of disk operating
systems developed for the Apple II family of
computers. It includes ProDOS 8 and ProDOS 16.

ProDOS 8: A disk operating system developed
for standard Apple II computers. It runs on 6502-
series microprocessors and on the Apple IIGS

when the 65C816 processor is in 6502 emulation
mode .

ProDOS 16: A disk operating system developed
for 65C816 native-mode operation on the
Apple IIGS. It is functionally similar to ProDOS 8
but more powerful.

program bank register: The 65C816 register
whose contents form the high-order byte of all
3-byte code address operands. Also called
PB register.

program counter: See PC register.

program status register: A register in the
65C816 microprocessor that contains flags
reflecting the various aspects of machine state and
operation results.

proportionally spaced: Said of a font whose
characters vary in width, so the amount of
horizontal space needed for each character is
proportional to its width. Compare
monos paced.

pseudo-type: A type that provides some
additional information about a parameter of a
toolbox routine.

pull-down menu: A set of choices for actions
that appears near the top of the display screen in a
desktop application, usually overlaying the
present contents of the screen without disrupting
them. Dragging through the menu and releasing
the mouse button while a command is highlighted
chooses that command.

purge: To temporarily deallocate a memory
block. The Memory Manager purges a block by
setting its master pointer to NIL (0). All handles to
the pointer are still valid, so the block can be
reconstructed quickly. Compare dispose.

purge level: A memory block attribute,
indicating that the Memory Manager may purge
the block if it needs additional memory space.
Purgeable blocks have different purge levels, or
priorities for purging; these levels are set by
Memory Manager calls.

queue: A list in which entries are added (pushed)
at one end and removed (pulled) at the other end,
causing entries to be removed in first-in, first-out
(FIFO) order. Compare stack.

QuickDraw Il: The Apple IIGS tool set that
controls the graphics environment and draws
simple objects and text. Other tools call
QuickDraw II to draw such things as windows.

QuickDraw II Auxiliary: The Apple IIGS tool set
that provides extensions to the capabilities of
QuickDraw II.

QuickDraw II Auxiliary icon record: A data
structure that defines the appearance of an icon.

quit: To terminate execution in an orderly
manner. Apple IIGS applications quit by making a
ProDOS 16 QUIT call or the equivalent.

radio button: A common type of control in
dialog boxes. Radio buttons are small circles
organized into families; clicking any button on
turns off all the others in the family, like the
buttons on a car radio. See also check box.

RAM: See random-access memory.

random-access memory (RAM): Memory in
which information can be referred to in an
arbitrary or random order. Programs and other
data in RAM are lost when the computer is turned
off. Technically, the read-only memory (ROM) is
also random access, and what's called RAM
should correctly be termed read-write memory.
Compare read-only memory.

range mode: In the List Manager, a selection
mode that allows the user to select a range of
members in a list.

Glossary G-21

read-only memory (ROM): Memory whose
contents can be read, but not changed; used for
storing firmware. Information is placed into ROM
once, during manufacture; it then remains there
permanently, even when the computer's power is
turned off. Compare random-access memory.

real font: A font that exists on disk or was added
by an application and marked as real. Compare
unreal font.

rectangle: One of the fundamental shapes drawn
by QuickDraw II. Rectangles are completely
defined by two points-their upper left and lower
right corners on the coordinate plane. The upper
left corner of any rectangle is its origin.

reentrant: Said of a routine that is able to accept
a call while one or more previous calls to it are
pending, without invalidating the previous calls.
Under certain conditions, the Apple IIGS
Scheduler manages execution of routines that are
not reentrant.

region: An arbitrary area or set of areas on the
QuickDraw II coordinate plane. The outline of a
region must be one or more closed loops.

relocatable: Characteristic of a load segment or
other program code that includes no references to
specific address, and so can be loaded at any
memory address. A relocatable segment consists
of a code image followed by a relocation
dictionary. Compare absolute.

relocation: The act of modifying a program in
memory so that its address operands correctly
reflect its location and the locations of other
segments in memory. Relocation is performed by
the system loader when a relocatable segment is
first loaded into memory.

repeat delay: The time interval before the first
auto-key event is generated.

repeat speed: The time interval between auto­
key events, except for the first auto-key event. See
also repeat delay.

G-22 Glossary

reserved memory: Memory not managed by
the Memory Manager; that is, memory that is
marked as busy at startup time.

right scroll bar: The control the user selects to
scroll vertically through the data in the window.

ROM: See read-only-memory.

ROM font: The font contained in system ROM.

rounded result: The nearest representable value
to the actual value, with ties going to the value with
the larger magnitude.

rounded-corner rectangle: One of the
fundamental shapes drawn by QuickDraw II. The
rounded corners of this type of rectangle are
defined by an oval height and oval width.

routine: A part of a program that accomplishes
some task subordinate to the overall task of the
program.

RU (Return from Subroutine Long): A 65816
assembly-language instruction.

RTS (Return from Subroutine): A 65816
assembly-language instruction.

SANE (Standard Apple Numeric
Environment): The set of methods that
provides the basis for floating-point calculations
in Apple computers. SANE meets all requirements
for extended-precision, floating-point arithmetic
as prescribed by IEEE Standard 754 and ensures
that all floating-point operations are performed
consistently and return the most accurate results
possible.

SANE Tool Set: The Apple IIGS tool set that
performs high-precision, floating-point
calculations, following SANE standards.

scaled font: A font that is created by the Font
Manager by calculation from a real font of a
different size.

scaling: The process of taking all characters of a
real font and making them bigger or smaller to
generate a requested font.

scan line: A single horizontal line of pixels on
the screen. It corresponds to a single sweep of the
electron gun in the video display tube.

scan line control byte (SCB): A byte in
memory that controls certain properties, such as
available colors and number of pixels, for a scan
line on the Apple IIGS. Each scan line has its own
SCB.

SCB: See scan line control byte.

Scheduler: The Apple IIGS tool set that manages
requests to execute interrupted software that is not
reentrant. If, for example, an interrupt handler
needs to make system software calls, it must do so
through the Scheduler because ProDOS 16 is not
reentrant. Applications normally need not use the
Scheduler because ProDOS 16 is not in an
interrupted state when it processes applications'
system calls.

scrap count: A count that indicates how many
times the desk scrap has changed.

Scrap Manager: The Apple IIGS tool set that
supports the desk scrap, which allows data to be
copied from one application to another or from
one place to another within an application.

scroll: To move an image of a document or
directory in its window so that a different part of it
is visible.

scroll bar: A rectangular bar that may be along
the right or bottom of a window. Clicking or
dragging in the scroll bar causes the view of the
document to change.

selection range: The series of characters where
the next editing action will occur.

serial interface: A standard method, such as
RS-232, for transmitting data serially (as a
sequence of bits).

serial port: The connector for a peripheral
device that uses a serial interface.

Shaston: The Apple IIGS system font.

shut down: To remove from memory or
otherwise make unavailable, as a tool set that is no
longer needed or an application that has quit.

single mode: In the List Manager, a selection
mode that allows the user to select only one
member of a list at once; that is, when the user
drags the mouse, the selection moves from one
member to another.

65C816: The microprocessor used in the
Apple IIGS. The 65C816 is a CMOS device with a
16-bit data bus and a 24-bit address bus.

6502: The microprocessor used in the Apple II,

Apple II Plus, and early models of the Apple Ile.
The 6502 is an NMOS device with 8-bit data
registers and 16-bit address registers.

65816 assembly language: A low-level
programming language written for the 65816
family of microprocessors.

640 mode: An Apple IIGS video display mode,
640 pixels horizontally by 200 pixels vertically.

size box: A small region in the lower right corner
of a window that the user can drag to change the
size of the window.

slop rectangle: The rectangle that allows the user
some margin for error when moving the mouse.

slot: A narrow socket inside the computer where
the user can install peripheral cards. Also called
expansion slot.

smoothing: A LaserWriter printing option that
asks the system to smooth out any bit-mapped
fonts with jagged edges.

software: A collective term for programs, the
instructions that tell the computer what to do.
Software is usually stored on disks. Compare
firmware, hardware.

sound GLU (general logic unit): The interface
chip between the system hardware and the sound
hardware.

G lossary G-23

Sound Tool Set: The Apple IIGS tool set that
provides low-level access to the sound hardware.

source location: The location (memory buffer
or portion of the QuickDraw II coordinate plane)
from which data such as text or graphics are
copied. See also destination rectangle.

source rectangle: The rectangle (on the
QuickDraw II coordinate plane) where text or
graphics are drawn when transferred from
somewhere else. Compare destination
rectangle.

special memory: On an Apple IIGS, all of banks
$00 and $01 and all display memory in banks $EO
and $El. It is the memory directly accessed by
standard Apple II programs running on the
Apple IIGS.

spool printing: A two-step printing method used
to print graphics on the ImageWriter. In the first
step, it writes out (spools) a representation of your
document's printed image to a disk file or to
memory. The second step consists of this
information being converted into a bit image and
printed. Compare draft printing.

S register: See stack register.

SRQ list: A special tool mechanism that can be
used to poll the Apple Desktop Bus for data from
specific devices.

SRQ list completion routine: Used in
conjunction with the ADB Tool Set routine
AsyncADBReceive, this completion routine
obtains ADB data from a buffer. The only major
difference between this routine and the
AsyncADBReceive completion routine is that the
SRQ list routine has an extra return address on the
stack when it is called. Compare
AsyncADBReceive completion routine.

G-24 Glossary

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing entries to be removed in last­
in, first-out (LIFO) order. The stack usually refers
to the particular stack pointed to by the 65C816's
stack register. Compare queue.

stack pointer: See stack regi~ter.

stack register: A register in the 65816 processor
that indicates the next available memory address
in the stack. Also called S register.

stage byte: Determines the actions taken by an
alert. See also alert stage.

Standard Apple Numerics Environment: See
SANE.

standard Apple Il: Any computer in the Apple II
family except the Apple IIGS. That includes the
original Apple II , the Apple II Plus, the Apple Ile,
and the Apple Ile. Compare Apple II.

Standard File Operations Tool Set: The
Apple IIGS tool set that creates a standard user
interface for opening and closing files.

standard window controls: The window
controls that allow the user to scroll through the
data in the window, change the window's shape, or
close the window. They also provide information
about the document currently displayed in the
window.

start up: To get the system, application
program, or tool set running.

static segment: A program segment that must
be loaded when the program is started and cannot
be removed from memory until execution
terminates. Compare dynamic segment.

static text: Text on the screen that cannot be
altered by the user.

string: A sequence of characters. See also
C string, Pascal string.

string bounds rectangle: The smallest
rectangle that would enclose all the foreground
and background pixels of a string if the string were
to be drawn.

structure region: An entire window: its content
region plus its frame region.

style dialog box: A dialog box that allows the
user to specify formatting information, page size,
and printer options.

styled variation: An italicized, bold,
underlined, or otherwise altered version of a
plain-styled character or font.

style subrecord: A data structure within the print
record that contains information gathered from
the user via the style and job dialog boxes.

subdirectory: A file that contains information
about other files : In a hierarchical file system, files
are accessed through the subdirectories that
reference them.

subroutine: A part of a program that can be
executed on request from another point in the
program and that, upon completion, returns
control to the point of the request.

Super Hi-Res: Either of two high-resolution
Apple IIGS display modes: 320 mode consists of an
array of pixels 320 wide by 200 high, with 16
available colors; 640 mode is an array 640 wide by
200 high, with 16 available colors (with
restrictions).

swap pair: A pair of oscillators that form a
functional unit (called a generator) when the
digital oscillator chip (DOC) is in swap mode.

switcher: A program that rapidly transfers
execution among several applications.

switch event: An event that indicates the
application is being returned to after being
switched out of by a switcher-type application.

synthesizer: (1) A hardware device capable of
creating sound digitally and converting it into an
analog waveform that you can hear. (2) By
analogy, any sound-making entity, such as the
Free-Form Synthesizer in the Sound Tool Set.

system clock: See clock (1).

system disk: A disk that contains the operating
system and other system software needed to run
applications .

system event mask: A set of flags that controls
which event types get posted into the event queue
by the Event Manager.

system failure: The unintentional termination
of program execution due to a severe software
error .

System Failure Manager: A part of the
Miscellaneous Tool Set that processes fatal errors
by displaying a message on the screen and halting
execution.

system folder: The SYSTEM/subdirectory on a
ProDOS 16 system disk.

system font: The font that QuickDraw II uses as
the default current font when a new GrafPort is
opened.

System Loader: The program that manages the
loading and relocation of load segments
(programs) into the Apple IIGS memory. The
System Loader works closely with ProDOS 16 and
the Memory Manager.

system menu bar: The menu bar that always
appears at the top of the screen in desktop
applications. It contains all of the commonly used
functions such as File, Edit, and so on. Compare
window menu bar.

system software: The components of a
computer system that support application
programs by managing system resources such as
memory and I/ 0 devices.

system window: A window in which a desk
accessory is displayed.

G lossary G-25

task code: A numeric value assigned to the result
of each event handled by TaskMaster. Compare
event code.

TaskMaster: A Window Manager routine that
handles many typical events for an application.
Applications may call TaskMaster instead of
GetNextEvent.

template: A data structure or set of parameters
that defines the characteristics of a desktop
feature, such as a window control. The
NewWindow parameter list is a template that
defines the appearance of a window to be opened
by the NewWindow call.

text block: A number of ASCII characters in a
buffer, with the number specified separately.

text buffer: A 1-bit-per-pixel pixel image
reserved for the private use of the QuickDraw II
text-drawing call.

text file format (TFF): A file that consists of
ASCII representations of characters. Compare
object module format.

text mode: One of eight possible interactions
between pixels in text being drawn to the screen
and pixels on the screen that fall under characters
being drawn. Compare pen mode.

Text Tool Set: The Apple IIGS tool set that
provides an interface between Apple II character
device drivers and applications running in native
mode.

TFF: See text file format.

320 mode: An Apple IIGS video display mode,
320 pixels horizontally by 200 pixels vertically.

tick count: The (approximate) number of
60th-second intervals since system startup.

title bar: The horizontal bar at the top of a
window that shows the name of the window's
contents. The user can move the window by
dragging the title bar.

tool: See tool set.

G-26 Glossary

toolbox: See Apple IIGS Toolbox.

Tool Locator: The Apple IIGS tool set that
dispatches tool calls. The Tool Locator knows and
retrieves the appropriate routine when your
application makes a tool call.

tool pointer table (TPT): A table, maintained
by the Tool Locator, that contains pointers to all
active tool sets.

tool set: A group of related routines (usually in
ROM) that perform necessary functions or provide
programming convenience. They are available to
applications and system software. The Memory
Manager, the System Loader, and QuickDraw II are
Apple IIGS tool sets.

tool table: A list of all needed tool sets and their
minimum required versions. An application
constructs this table in order to load its tools with
the LoadTools call.

TPT: See tool pointer table.

transfer mode: A specification of which
Boolean operation QuickDraw II should perform
when drawing. See, for example, XOR.

TRUE: Not zero. The result of a Boolean
operation. The opposite of FALSE.

typelD: A subfield of the user ID. The User ID
Manager assigns a type!D value based on the type
of program (application, tool set, and so on)
requesting the memory.

unclaimed interrupt: This occurs when the
hardware Interrupt Request Line is active,
indicating that an interrupt-producing device
needs attention, but none of the installed interrupt
handlers claims responsibility for the interrupt.

underline: (1) A style of text. (2) A method used
to separate groups of items in a menu. An
underlined item does not use any more space, on
the screen or in memory, than the item does
without the underline. Compare dividing line.

unhighlight: To restore to normal display.
Selected controls, menu items, or other objects
may be highlighted (usually displayed in inverse
colors) while in use and unhighlighted when not in
use.

unload: To remove a load segment from
memory. To unload a segment, the System Loader
does not actually "unload" anything; it calls the
Memory Manager to either purge or dispose of the
memory block in which the code segment resides.

unlock: To permit the Memory Manager to move
or purge a memory block if needed. Compare
lock.

unmovable: See fixed.

unpack: To restore to normal format from a
packed format.

unpurgeable: Having a purge level of zero. The
Memory Manager is not permitted to purge
memory blocks whose purge level is zero.

unreal font: A font that was scaled by the Font
Manager from a real font of a different size or
added by an application and marked as unreal.
Compare real font.

update event: An event posted by the Window
Manager when all or part of a window needs to be
redrawn.

user ID: An identification number that specifies
the owner of every memory block allocated by the
Memory Manager. User !D's are assigned by the
User ID Manager.

User ID Manager: A part of the Miscellaneous
Tool Set that is responsible for assigning user !D's
to every block of memory allocated by the
Memory Manager.

vector: A location that contains a value used to
find the entry point address of a subroutine.

view rectangle: The rectangle within which text
in an edit record is visible; that is, the portion of
the text in the destination rectangle that the user
can see is determined by the view rectangle.

visible region: The part of a window that's
actually visible on the screen. The visible region is
defined by a GrafPort field manipulated by the
Window Manager.

voice: Any one of 16 pairs of oscillators in the
Ensoniq sound chip on the Apple IIGS.

wedge: A filled arc, one of the fundamental
shapes drawn by QuickDraw II.

window: A rectangular area that displays
information on a desktop. You view a document
through a window. You can open or close a
window, move it around on the desktop, and
sometimes change its size, scroll through it, and
edit its contents. The area inside the window's
frame corresponds to the port rectangle of the
window's GrafPort.

window definition procedure: A procedure
used to define the appearance and behavior of a
custom window.

window frame: The outline of the entire window
plus certain standard window controls.

Window Manager: The Apple IIGS Tool Set that
updates and maintains windows.

window menu bar: A menu bar that appears at
the top of the active window, below the system
menu bar. It can contain document titles,
applications, and functions . Compare system
menu bar.

window record: The internal representation of a
window, where the Window Manager stores all the
information it needs for its operations on that
window.

word: On the Apple IIGS, a 16-bit (2-byte) data
type. Compare long, long word.

x flag: One of three flag bits in the 65C816
processor that programs use to control the
processor's operating modes. In native mode, the
setting of the x flag determines whether the index
registers are 8 bits wide or 16 bits wide. See also
e flag, m flag.

Glossary G-27

XOR: Exclusive-OR. A Boolean operation in
which the result is TRUE if, and only if, the two
items being compared are unequal in value.

X register: One of the two index registers in the
65816 microprocessor.

Y register: One of the two index registers in the
65816 microprocessor.

zero page: The first page (256 bytes) of memory
in a standard Apple II computer (or in the
Apple JIGS when running a standard Apple II
program). Because the high-order byte of any
address in this part of memory is zero, only a
single byte is needed to specify a zero-page
address. Compare direct page.

z flag: A bit in the 65816 processor's Processor
Status register that is set to 1 if the last operation
resulted in O (zero).

zoom box: A small box with a smaller box
enclosed in it found on the right side of the title
bar of some windows. Clicking the zoom box
expands the window to its maximum size; clicking
it again returns the window to its original size.

zoom region: The window region that
corresponds to the zoom box.

G-28 Glossary

A
abort 3-20, 3-28
abortMgr 14-67
absClamps 14-66
AbsOff 3-13
absolute clamp 7-27, 14-2 1, 14-37,

14-38
absolute device 3-13, 3-15 , 3-16,

3-23, 14-5, 14-37, 14-38
Absolute flag 3-4
AbsOn 3-13
action code

MessageCenter 24-15
new desk accessory 5-7

action procedure 4-83-84
dialog scroll bar 6-15

activate event 7-4, 7-5, 7-14,
10-11, 10-16, 10-20, 25-24,
25-78, 25-92

activateEvt 7-7, 7-50, 25-120
active control 4-7
activeFlag 7-9, 7-10, 7-5 1
activeMask 7-11 , 7-50
active window 25-8, 25-11, 25-24,

25-50, 25-92
ADBBootln it 3-10
adbBusy 3-14, 3-26, 3-27, 3-29,

B-4
ADB Change Address When

Activated handler 3-4
ADB commands 3-1, 3-2, 3-14,

3-27
adbDataint 14-24, 14-66
adbDisable 14-26, 14-67
adbEnable 14-26, 14-67
adbRBIHnd 14-68
ADBReset 3-5, 3-12
ADBShutDown 3-5, 3-11
adbSRQHnd 14-68
ADBStartUp 3-5, 3-10

Index

ADBStatus 3-12
ADBVersion 3-11
AddFamily 8-19, 8-23, 8-25, 8-26
AddFontVar 8-1, 8-15, 8-19, 8-23,

8-24-25
addMessage 24-15 , 24-26
AddPt 16-68
Alert 6-19-22, 6-31-34
alert box 6-6
alert Dr awn 6-89
alert mechanism 6-1
alert sound 6-6, 6-21-22, 6-47
a lert stage 6-20-21, 6-33, 6-49,

6-76
alert te mplate 6-11 , 6-19-20,

6-31, 6-32
alert w indow 6-7, 25-6

color table 25-17
allocateErr 25-83, 25-144, B-4
allocation of memory 12- 1, 12-35
allocation of private memory

12-10-11, 12-14
alreadyinitialized 16-64,

16-278, B-3
Alternate Display Mode 5-3
alternate-display-mode desk

accessory 5-24
alternative pointing device

7-21-25, 7-27, 7-34 , 14-5
anyFamBit 8-11, 8-50
anySizeBit 8-11, 8-50
anyStyleBit 8-11 , 8-50
APDA xxvii
apFamBit 8-9, 8-12, 8-50
applEvt 7-7, 7-50
applMask 7-11, 7-50
app2Evt 7-7, 7-50
app2Mask 7-11, 7-50
app3Evt 7-7, 7-50
app3Mask 7-11 , 7-50

app4Evt 7-7, 7-50
app4Mask 7-11, 7-50
Apple Desktop Bus 3-1, 7-24

commands 3-2
polling 3-3

Apple Desktop Bus Tool Set 1-4 ,
1-5, 3-1-29, 7-24

constants 3-28-29
data structures 3-29
error codes 3-29
shutdown routine 3-11
startup routine 3-10
status routine 3-12
using 3-5-7
version number routine 3-11

Apple IIGs font definition
16-42-43

Apple IIGS Programmer's
Workshop. See APW

Apple IIGs Workshop C 2-6
appleKey 7-9, 7-51
Apple-Left Arrow 10-1, 10-29
Apple logo 13-6, 13-15, 13-56
Apple Menu 5-8, 5-15, 5-20, 13-4,

13-5, 13-15
Apple-period 15-24
Apple Programmer's and

Developer's Association.
See APDA

Apple-Right Arrow 10-1, 10-29
AppleTalk 15-5
application-defined event 7-14
application event 7-4
application window 25-8, 25-66,

25-70, 25-122
apVarBit 8-9, 8-10, 8-50
APW xxvii, 2-5
APW MacGen utility 2-5
arbitrary mode 11-12
arc 16-24, 16-88, 16-94, 16-101 ,

16-164

1-1

arcRot 16-109, 16-212
arc tangent 9-13
A register 2-5, 2-7
arrow cursor 16-38, 16-160
ascent 16-26, 16-45, 16-48, 16-62
ascent line 16-45
ASCII 9-8, 9-9, 9-25, 9-26, 9-29,

9-30, 9-31, 9-33, 14-4, 14-16
assembly language , calling routines

from 2-5
AsyncADBReceive 3-3, 3-7-8,

3-14, 3-27, 7-24
asynchronous key event 7-15-18
atAlert/D 6-20, 6-32, 6-89
aTalkintHnd 14-67
aTalkNodeNo 14-66
atBoundsRect 6-20, 6-32, 6-89
athens 8-4, 8-51
atltemList 6-89
atStagel 6-20, 6-32 , 6-89
atStage2 6-20, 6-32, 6-89
atStage3 6-20, 6-32, 6-89
atStage4 6-20, 6-32, 6-89
at tr Addr 12-12-13, 12-49
attrBank 12-12- 13, 12-49
attrErr 12-42, 12-47, B-2
attrFixed 12-12-13, 12-49
attrHandle 12-47
attributes word 12-12, 12-32,

12-39
attrLocked 12-12- 13, 12-47
attrNoCross 12-12- 13, 12-47
attrNoPurge 12-12- 13, 12-47
attrNoSpec 12-12-13, 12-47
attrPage 12-12-13, 12-47
attrPurge 12-12-13 , 12-47
attrPurgel 12-12-13, 12-47
attrPurge2 12-12-13, 12-47
attrPurge3 12-12-13, 12-47
attrSystem 12-47
auto-key event 6-39, 7-3, 7-13
autoKeyEvt 7-7, 7-50, 25-120
autoKeyMask 7-11, 7-50
au t oTr ack 4-25, 4-36, 4-83, 4-86
auxFileType 22-24, 22-32
aux!D 12-10-11 , 12-14, 12-15 ,

14-58
available font 8-1, 8-25, 8-36
axisParam 4-33-34, 4-88

1-2 Index

B
background 16-52
background color 16-26, 16-54,

16-57, 16-110, 16-213, 16-226
background pattern 16-18, 16-111,

16-2 14, 16-251
background pixel 16-28, 16-30,

16-52
background procedure 15-24,

15-4 1
BackGroundRgn 25-42, 25-139
backslash character 5-8, 13-14
Backspace 10-2, 10-29
badColorNum 16-115, 16-220,

16-278, B-3
badDevNum 23-15, 23-47, B-4
badDevType 23-15, 23-28, 23-33,

23-35, 23-38, 23-47, B-4
badFile 23-47
badFormat 23-16, 23-47, B-4
badinputErr 14-19, 14-57,

14-70, B-2
baditemType 6-56, 6-57, 6-69,

6-84, 6-90, B-5
badLaserP rep 15-36, 15-42,

15-49, B-5
badLPF ile 15-36, 15-42, 15-49,

B-5
badMode 23-15, 23-47, B-4
badRect 16-278, B-3
badScanLine 16-250, 16-278, B-3
badScrapType 20-10, 20-12,

20-14, 20-19, B-5
badTableNum 16-115, 16-116,

16-220, 16-221, 16-278, B-3
badTitle 23-15 , B-4
barArrowBack 4-22, 4-87, 11-7
barlnactive 4-22, 4-87, 11-7
barNorArrow 4-22, 4-87, 11-7
barNorThumb 4-22, 4-87, 11-7
barOutline 4-22, 4-87, 11-7
barPageRgn 4-22, 4-87, 11-7
barSelArrow 4-22, 4-87, 11-7
barSelThumb 4-22, 4-87, 11-7
base family 8-7, 8-12, 8-13
base line 10-7, 16-26, 16-45
baseOnlyBit 8-8, 8-50
BASIC device driver 23-3
bas icType 23-46

Battery RAM 14-4, 14-9, 14-10,
14-11, 14-13, 14-16

parameter reference
numbers 14-12

BeginUpdate 4-54, 10-11, 10-46,
25-11, 25-20, 25-35, 25-47,
25-116, 25-119

BELLI 14-53
bell Vector 14-68
bellVolume 14-65
best-fit font algorithm 8-6,

8-16-17, 8-44
Better Color option 15-8
Better Text option 15-8
bFileVers 15-14, 15-15, 15-48
bgColor 16-110, 16-213
bit plane 16-31
b]DocLoop 15-14, 15-15 , 15-37,

15-48
black 16-274
blinking caret 10-10, 10-26
blinking menu item 13-76
blink interval 10-26
block 12-1. See also memory

block
fixed 12-7
locked movable 12-7
locking 12-31
purging 12-8, 12-39, 12-40
unlocking 12-32, 12-33

BlockMove 12-21
blue 16-274
blueMask 16-274
boldMask 16-276
BOOLEAN xxx
bottomMost 25-139
bottom scroll bar 25-6
boundary rectangle 16-13-17,

16-232
boundRect 4-33-34, 4-88
boundsRect 16-13
boxNor 4-18, 4-87
boxReserved 4-18, 4-87
boxSel 4-18, 4-87
boxTitle 4-18, 4-87
breakVector 14-68
BringToFront 25-36
brkVar 14-66
brown3 2 0 16-274
btn0State 7-9, 7-10, 7-51
btn 1 St ate 7-9, 7-10, 7-51

bttn!ntrpt 14-36, 14-67
bttnintrptVI 14-36, 14-67
bttnNorBack 4-16, 4-87
bttnNorText 4-16, 4-87
bttnOrMove 14-36, 14-67
bttnOrMoveV I 14-36, 14-67
bttnOutline 4-16, 4-87
bttnSelBack 4-16, 4-87
bttnSelText 4-16, 4-87
BufDimRec 16-206, 16-276
bufferSize 21-17, 21-37
buffer-sizing record 16-205,

16-206-207
built-in CDA name 5-16, 5-23
busy flag 5-3, 19-1, 19-3, A-1
Button 7-14, 7-31, 7-47
button 4-3 , 4-14

bold outline 4-14, 4-85
cancel 6-4, 6-5, 6-18, 6-58
default 6-5, 6-11, 6-37
disk 22-24, 22-31
mouse 4-46
OK 6-4, 6-5, 6-18, 6-58
radio 4-4

buttonitem 6-10, 6-88

C
C, calling routines from 2-6
cairo 8-4, 8-51
calcCRect 4-25
CalcMenuSize 13-13, 13-19, 13-33,

13-37, 13-41, 13-58
calcRect 4-86
calling tool set routines

assembly language 2-5
C 2-6

cancel 6-89
cancel button 6-4, 6-5, 6-18, 6-21,

6-58, 8-14
cancel Def a ult 6-89
cannotReset 16-278, B-3
cantSync 3-29, B-4
capsLock 7-9, 7-51
caret 7-36, 10-8 , 10-9, 10-11,

10-20, 10-34, 10-38, 10-46
blinking 10-10, 10-26

carriage return character 10-40,
10-42

carry fl ag. See c flag
Caution alert 6-6

CautionAlert 6-24, 6-35
caution icon 6-35
CDA header section 5-18
CDA menu 5-3, 5-12, 5-21
CDA name 5-16, 5-23
c flag 2-5, 2-7, B-1
Change Address command 3-4
changeFlag 7-9, 7-10, 7-51
change flag byte 10-43
channel-generator type word 21-16
character 16-26

dead 16-45
missing 16-48-49

character bounds rectangle 16-28,
16-52, 16-69, 16-76, 16-269

character bounds width 16-52
character device driver 1-4, 23-1,

23-3
character echo-flag word 23-29
character image 16-26
character image width 16-44
character origin 16-26-27, 16-45
character position 10-7
character rectangle 16-44
character width 16-26-27, 16-44,

16-45, 16-5 1, 16-70, 16-77,
16-267, 16-270

CharBounds 16-29, 16-56, 16-58,
16-69

CharWidth 16-29, 16-56, 16-58,
16-70

check box 4-3, 4-10, 4-16
control record 4-16-18

checkBox 4-86
CheckHandle 12-22
check!tem 6-10, 6-88
CheckMitem 13-6, 13-34
checkProc 4-13, 4-73, 4-85
CheckUpdate 25-37
chExtra 16-30, 16-51, 16-55,

16-58, 16-59, 16-60, 16-112,
16-217

ChooseCDA 5-12
ChooseFont 8-13, 8-14, 8-15,

8-26-27, C-5
Choose Printer dialog box 15-1,

15-4-5
chunky pixel 16-31
clamp

absolute 14-21
absolute device 14-37, 14-38

ClampMouse 7-27, 14-30
clamp value 2-2, 7-27, 14-30,

14-31
classic desk accessory 5-1
clear 5-30
clearAction 5-7, 5-30
Clear command 6-43
clearModes 3-20, 3-28
ClearMouse 14-31
ClearScreen 16-71
ClearSRQTable 3-15
Clipboard 20-1, 20-5, 20-17
clipping region 16-14-15, 16-17,

16-72, 16-113, 16-114,
16-187, 16-197, 16-208,
16-218, 17-10

ClipRect 6-7, 16-40, 16-72
c/ipRgn 16-15, 16-219, 25-23,

25-28
clockFormat 14-65
Close 5-14
CloseAIINDAs 5-12
close box 25-6, 25-8, 25-49
CloseDialog 6-23, 6-36
CloseNDA 5-6, 5-13
CloseNDAbyWinPtr 5-6, 5-14,

25-122
ClosePicture 17-5, 17-9
ClosePoly 16-40, 16-72
ClosePort 16-39, 16-73
CloseRgn 16-40, 16-74
CloseWindow 4-9, 4-68, 11-11,

11-16, 25-11, 25-29, 25-38,
25-127

ClrHeartBeat 14-53
cmndincomplete 3-14, 3-17,

3-18, 3-19, 3-25, 3-26, 3-27,
3-29, B-4

Collision Detect handler 3-4-5
color

background 16-26, 16-213
foreground 16-26, 16-228
list 11-10
window frame 25-18, 25-57,

25-99
window information bar 25-20
window size box 25-19
window title 25-18
window title bar 25-19

color box 15-8

Index 1-3

colorMitemHilite 13-78, 13-87
color pale tte. See palette
color printing 15-8, 15-15-18
colorReplace 13-72, 13-87
color table 11-10, 13-43,

16-3 1-33, 16-115, 16-116,
16-158, 16-220, 16-22 1

alert window 25-17
document window 25-17
standard 16-159
window 25-142

colorTable 16-275
comment 17-15
compaction of memory 12-5,

12-6-7, 12-15, 12-22
CompactMem 12-22
comparison routine 11-24
completion routine 3-7-9, 3-25

AsyncADBReceive 3-8
SRQ list 3-9

connector specification xxvi
constants

Apple Desktop Bus Tool Set
3-28-29

Control Manager 4-85-86
Desk Manager 5-30
Dialog Manager 6-88-89
Event Manager 7-50-51
Font Manager 8-50-51
Integer Math Tool Set 9-42
LineEdit Tool Set 10-47
List Manager 11-25
Memory Manager 12-47
Menu Manager 13-87
Miscellaneous Tool Set 14-64-68
Print Manager 15-47
QuickDraw II 16-274-76
Scrap Manager 20-19
Sound Tool Set 21-36-37
Standard File Operations Tool

Set 22-32
Text Tool Set 23-46
Tool Locator 24-26
Window Manager 25-139-141

con Table32 0 16-107
conTabl e640 16-107
content height, maximum 25-87

1-4 Index

content region 4-8, 25-9, 25-12,
25-35 , 25-51, 25-53, 25-60,
25-62, 25-64, 25-83, 25-87,
25-88, 25-92, 25-94, 25-96,
25-103, 25-105, 25-106,
25-131, 25-132

content width, maximum 25-87
control 1-3 , 4-1

active 4-7
custom 4-24
defining 4-24-40
highlighted 4-7
inactive 4-7
standard 4-3-4
window 4-8, 25-6-7

control code 23-15
control definition procedure 4-24,

4-46, 4-73, 11-1, 11-11
Control-F 10-2 , 10-29
control flag 4-12, 4-13, 4-72

check box 4-18
radio button 4-14
scroll bar 4-22
simple button 4-16
size box 4-20

controlKey 7-9, 7-51
control list 25-68
Control Manager 1-3 , 1-5, 4-1-88,

6-28, 25-9
constants 4-85-86
data structures 4-87-88
error codes 4-88
icon font 4-11
part codes 4-8
shutdown routine 4-43
startup routine 4-42
status routine 4-44
using 4-9-10
version number routine 4-43

Control Panel 3-1, 5-3, 5-22, 6-21,
7-3 , 7-36, 7-37, 10-26, 13-76

control record 4-11-24
check box 4-16-18
radio button 4-18-20
scroll bar 4-20-22
simple button 4-14-16
size box 4-23-24

Control-X 10-2, 10-29
Control-Y 10-2, 10-29

conventions
boldface xxxi
Courier xxxi
italic xxxi

coordinate plane 16-9-14
copies 15-8
copMgr 14-67
copy 5-30
copyAction 5-7, 5-30
Copy command 6-41, 20-1, 20-6
CopyPixels 17-5, 17-10
CopyRgn 16-75
cosine 9-20
CountFamilies 8-28
CountFonts 8-15, 8-29-30
CountMitems 13-13, 13-35
count word 14-49
Courier xxxi, 8-4, 8-51
CreateControl 11-10
CreateList 11-5, 11-11, 11-16,

11 -23
crsrUpdtHnd 14-68
crWidth 15-12, 15-13
C string 16-26, 16-41
cString 11-25
CStringBounds 16-29, 16-58,

16-76
CStringWidth 16-29, 16-58, 16-77
ct/Action 4-12, 4-13, 4-15, 4-19,

4-21, 4-23 , 4-59, 4-74, 4-87,
11-6, 13-17

Ct!Bootlnit 4-41
ct/Color 4-12, 4-14, 4-15, 4-16,

4-17, 4-19, 4-21, 4-23, 4-87,
11-6, 11-10, 13-17

ct/Data 4-12, 4-14, 4-15, 4-17,
4-19, 4-21, 4-23, 4-63, 4-78,
4-87, 11 -6, 13-17

ct/Flag 4-12, 4-13, 4-15, 4-17,
4-19, 4-21, 4-23, 4-87, 11 -6,
13-17

ctlHilite 4-12, 4-13, 4-15, 4-17,
4-19, 4-21, 4-23, 4-87, 11-6,
13-17

ctlinVis 4-16, 4-18, 4-20, 4-22,
4-24, 4-72, 4-80, 4-85

ct/List 11-6, 11-26
ctllistBar 11-6, 11-26

ctlMemDraw 11-6, 11-26
ct/MemHeight 11-6, 11-26
ct/MemSize 11-6, 11-26
CtlNewRes 4-45
ct/Next 4-12, 4-13, 4-15, 4-17,

4-19, 4-21, 4-23, 4-87, 11-6,
13-17

ct/Owner 4-12, 4-13, 4-15 , 4-17,
4-19, 4-21, 4-23, 4-87, 11-6,
13-17

ct/Proc 4-12, 4-13 , 4-15 , 4-17,
4-19, 4-21, 4-23, 4-87, 11-6,
13- 17

ctlRect 4-12, 4-13, 4-15, 4-17,
4-19, 4-21, 4-23, 4-87, 11-6,
13-17

ct/Re/con 4-12, 4-14, 4-15 , 4-17,
4-19, 4-21, 4-23, 4-62, 4-77 ,
4-87, 11-6, 13-17

CtlReset 4-44
Ct!ShutDown 4-9, 4-43
CtlStartUp 4-9, 4-42
CtlStatus 4-44
CtlTextDev 23-15- 16
ct/Va lue 4-12, 4-13, 4-15, 4-17,

4-19, 4-21, 4-23, 4-64 , 4-79,
4-87, 11-6, 13-17

CtlVe rsion 4-43
ctlYVector 14-68
current font 8-8, 16-26, 16-119,

16-224
current icon font 25-109
cursor 16-37-38, 16-156, 16-160,

16-182, 16-222, 16-230,
16-264, 17-16, 25-46

cursorAction 5-7, 5-30
cursor record 16-37, 16-117,

16-222
custom control 4-24
custom menu 13-6
custornMenu 13-72, 13-87
cut 5-30
cutAct ion 5-7, 5-30
Cut command 6-42, 20-1, 20-6

D
daNotFound 5-14, 5-20, 5-30, B-3
darkGray320 16-274
darkGreen320 16-274
data area 25-9-10, 25-54, 25-87,

25-96, 25-97
data bank 25-43
data structures

Apple Desktop Bus Tool Set
3-29

Control Manager 4-87-88
Dialog Manager 6-89-90
Event Manager 7-5 1
Font Manager 8-51
LineEdit Tool Set 10-47
List Manager 11-25-26
Menu Manager 13-88
Miscellaneous Tool Set 14-69
Print Manager 15-47-48
Qu ickDraw II 16-276-278
Sound Tool Set 21-37
Standard File Operations Tool

Set 22-32
Window Manager 25-142-143

dateForrnat 14-65
dblClkTir.te 14-65
dead character 16-45
deallocation of memory 12-1,

12-23, 12-24
decBsyFlag 14-68
Dec2Int 9-8
Dec2Long 9-9
default button 6-5, 6-11 , 6-18,

6-21, 6-24, 6-37, 6-5 1, 6-80
Defau ltFilter 6-37
defProcParm 6-90
DeleteID 14-59
DeleteMe nu 13-13 , 13-36, 13-39
deleteMessage 24-15, 24-26
DeleteMitem 13-13, 13-37
De lHeartBeat 7-25, 14-52
delta flag byte 10-43
depe ndencies C-1-5
dereference 12-5
descender 16-45
descent 16-26, 16-45 , 16-48,

16-62

descent line 16-45
DESK.ACCS subdirectory 5-3 , 5-6
desk accessory 1-3 , 5-1

alte rnate-d isplay-mo de 5-24
classic 5-1
new 5-1

desk accessory event 7-4, 7-14
Desk Accessory menu 13-4-5
deskAccEvt 7-7, 7-50
de s kAccHnd 14-68
des kAc c Ma s k 7-11 , 7-50
DeskBootinit 5-9
Desk Manager 1-3 , 1-5 , 5-1-30

constants 5-30
e rror cod es 5-30
GetNextEvent and 7-40
shutdown routine 5-10
startup routine 5-9
status routine 5-11
versio n number routine 5-10

DeskReset 5-11
desk scrap 1-3 , 10-11, 10-23,

10-45 , 20-1, 20-3, 20-5-6
data types 20-3-4

DeskShutDown 5-4, 5-5, 5-6, 5-7,
5-10

DeskStartUp 5-4, 5-5 , 5-6, 5-7, 5-9
DeskStatus 5-11
Desktop 25-39-43
desktop 25-1, 25-39, 25-91
desktop patte rn 25-43
desktop user inte rface xxvi
DeskVersion 5-10
destination rectangle 10-4 , 10-6-7,

10-36
development e nvironment xxvii
de vE rr 23-16, 23-47, B-4
d evice d river 3-3, 7-21

installing 7-23-24
removing 7-25
writing 7-21-23

device driver entry po int 23-3
device driver event 7-4
de vNot At Addr 3-25, 3-29, B-4
dial 4-4
DialogBootinit 6-27

Index 1-5

dialog box 1-3, 6-1, 6-4--6
modal 6-5
modeless 6-5
standard 22-3

dialog item type 6-10-11
Dialog Manager 1-3, 1-6, 6-1-90,

24-21
constants 6-88-89
data structures 6-89- 90
error codes 6-90
shutdown routines 6-29
startup routines 6-28
status routines 6-30
using 6-23-24
version number routines 6-29

dialog pointer 6-19
dialog record 6-19
DialogReset 6-30
dialog scroll bar action procedure

6-15
DialogSelect 6-24, 6-38-39
DialogShutDown 6-23, 6-29
DialogStartUp 6-23, 6-28
DialogStatus 6-30
dialog template 6-60, 22-4-12,

22-26, 22-29
DialogVersion 6-29
dialog window 6-7
DiftRgn 16-78
digital oscillator chip (DOC) 21-3
dimmed menu item 13-6, 13-38,

13-60
direct page 6-28, 25-43

SANE 18-6, 18-9
direct-page space 2-2, 4-42, 7-27,

10-13, 12-13, 13-30, 15-26,
16-64, 18-12, 21-8, 22-16

DisableDitem 6-40, 6-82
disableitem 13-78, 13-87
disabled menu item 13-6, 13-38
disableinc 21-23, 21-36
disable increment 21-23, 21-35
disableMenu 13-72, 13-87
DisableMitem 13-6, 13-38
disableSRQ 3-21, 3-28
Disk button 22-24, 22-31
dispCtl 4-25, 4-30, 4-86
displayMode word 17-4
display rectangle 6-17, 6-52, 6-81

1-6 Index

displaySelect 22-22, 22-32
DisposeAII 12-11, 12-14, 12-15,

12-23
DisposeControl 4-9, 4-45, 11-11
DisposeHandle 12-23 , 12-24
DisposeMenu 13-36, 13-39, 13-67
DisposeRgn 16-40, 16-79
DisposeWindow 25-29
dithering 4-52, 16-35, 25-104
divByZeroErr 14-70, B-1
dividing line 13-6, 13-15-16
DlgCopy 6-24, 6-41
DlgCut 6-24, 6-42
DlgDelete 6-24, 6-43
DlgPaste 6-24, 6-44
DOC. See digital oscillator chip
docAddrRngErr 21-24, 21-28,

21-37, B-3
docBuffer 21-17, 21-37
DOC RAM 21-4, 21-24, 21-28,

21-31, 21-32
DOC registers 21-4 , 21-29, 21-30
document window 25-6

color table 25-17
DOC volume register 21-21
dontScaleBi t 8-44, 8-50
dot operator 2-6
DoWindows 7-12, 7-32
downArrow 4-86
downFlag 4-17, 4-72, 4-85
Draft option 15-8
draft printing 15-14-15, 15-20,

15-23, 15-37
DragControl 4-46-47, 11-11
dragCtl 4-25, 4-35, 4-86
dragPatt 4-33-34, 4-88
DragRect 4-48-49

parameters 4-50-53
drag region 25-9, 25-44, 25-49
DragWindow 25-11, 25-44-46,

25-124
DrawChar 16-54, 16-57, 16-80
DrawControls 4-9, 4-54, 11-11
DrawCString 16-57, , 16-81
drawCtl 4-25, 4-26, 4-86
DrawDialog 6-45
Drawlcon 17-4, 17-5, 17-11
drawing mask 16-18

drawing on the screen 16-12
drawing space 16-10, 16-57
DrawMember 11°8, 11-17, 11-23
DrawMenuBar 13-9, 13-30, 13-36,

13-40, 13-57, 13-72
DrawOneCtl 4-55, 11-11
DrawPicture 15-38, 16-25, 17-5,

17-12
Drawstring 16-54, 16-57, 16-82,

25-23
DrawText 16-57, 16-83, 25-23
driverEvt 7-7, 7-50
driverMask 7-11, 7-50
DRIVERS subdirectory 15-23,

15-24
dspBckColor 14-64
dspBrdColor 14-64
dspColMono 14-64
dsp40or80 14-64
dspTxtColor 14-64
dtBoundsRect 6-60, 6-90
dt!temlist 6-60, 6-90
dtRefCon 6-60, 6-90
dtVisible 6-60, 6-90
dua1Speed 14-65
dupFile 23-15, 23-47, B-4

E
echo 23-46
echo-flag word 23-29, 23-40
editLine 6-10, 6-11 , 6-12, 6-17,

6-39, 6-88
edit record 10-4-5, 10-10-11

allocating 10-10, 10-30
disposing 10-22
handle 10-10, 10-24
text length 10-25

emBadBttnNoErr 7-31, 7-49,
7-52, B-3

emBadEvtCodeErr 7-44, 7-52, B-3
emBadEvtQErr 7-52, B-3
emBadQHndlErr 7-52, B-3
embedded changes 10-43-44
EMBootlnit 7-26
emDupStrtUpErr 7-28, 7-52, B-3
emNoMemQueueErr 7-28, 7-52, B-3

emNotActErr 7-52, B-3
emptyErr 12-28, 12-29, 12-38,

12-43, 12-47, B-2
empty handle 12-8
empty rectangle 16-182
EmptyRgn 16-84
emQSiz2LrgErr 7-28, 7-52, B-3
EMReset 7-30
emResetErr 7-30, 7-52, B-3
EMShutDown 7-12, 7-29
EMStartUp 2-2, 7-12, 7-27-28
EMStatus 7-30
emulation mode 1-2
emulation-mode entry point 14-5,

14-17
EMVersion 7-29
EnableDitem 6-46, 6-82
enableitem 13-78, 13-87
enableMenu 13-72, 13-87
EnableMitem 13-6, 13-40
enableSRQ 3-21, 3-28
EndlnfoDrawing 25-47, 25-117
EndUpdate 4-54, 10-11, 10-46,

25-11, 25-20, 25-35, 25-47,
25-116, 25-119

EqualPt 16-85
EqualRect 16-86
EqualRgn 16-87
equate file 2-5
EraseArc 16-88
EraseControl 4-56, 11-11
EraseOval 16-89
ErasePoly 16-90, 16-103
EraseRect 10-11, 10-40, 10-42,

10-46, 16-91
EraseRgn 16-92
EraseRRect 16-93
erasing 16-18, 16-20
error 2-5
error codes 2-5

Apple Desktop Bus Tool Set
3-29

Control Manager 4-88
Desk Manager 5-30
Dialog Manager 6-90
Event Manager 7-52
Font Manager 8-52

Integer Math Tool Set 9-42
LineEdit Tool Set 10-48
Memory Manager 12-47
Miscellaneous Tool Set 14-70
Print Manager 15-34, 15-44,

15-49
QuickDraw II 16-278
Scrap Manager 20-19
Sound Tool Set 21-37
system failure 14-55-56
Text Tool Set 23-47
Tool Locator 24-26
tool set B-1-5
Window Manager 25-144

errorOutput 23-46
error output text device 23-17,

23-18, 23-19, 23-20, 23-21,
23-22, 23-23, 23-32, 23-33

ErrorSound 6-47
ErrWriteBlock 23-17
ErrWriteChar 23-18
ErrWriteCString 23-7, 23-19
ErrWriteLine 23-20
ErrWriteString 23-21
event 7-1

activate 7-4, 7-5, 7-14, 10-16,
10-20, 25-24

application 7-4
application-defined 7-14
asynchronous 7-15-18
auto-key 7-3, 7-13
desk accessory 7-4, 7-14
device driver 7-4
keyboard 7-3, 7-13
key-down 6-39, 6-66, 7-3, 7-13
mouse-down 6-39, 6-64, 6-66,

7-3, 7-13, 25-11 , 25-48-49,
25-127, 25-129-130

mouse-up 7-3, 7-13
priority 7-4-5, 7-40
switch 7-4, 7-5, 7-14, 7-46
types 7-3-4
update 10-46, 25-52, 25-94,

25-95, 25-96
window 7-4, 7-14

eventAction 5-7, 5-30
EventAvail 7-5, 7-33
event code 7-7
event-driven application xxv, 2-2,

7-1
Event Manager 1-3, 1-6-7, 2-2,

7-1-52, 14-5
constants 7-50-51
data structures 7-51
error codes 7-52
high-level 7-3
low-level 7-3
shutdown routines 7-29
startup routines 7-27-28
status routines 7-30
using 7-12-15
version number routines 7-29

event mask 7-10-11, 7-39, 7-41,
7-42

system 7-10, 7-45
event message 7-8
event priority 7-4-5, 7-40
event queue 2-2, 7-5, 7-27, 7-35,

7-39, 7-45
event record 7-6, 25-45, 25-48

modifier flags 7-8-10
everyEvent 7-50
evMgrData 14-66
expansion of memory 12-3
extended value xxx, 9-1
extVCGHnd 14-68
extVGCint 14-24, 14-66
exVCGDi sable 14-26, 14-67
exVCGEnable 14-26, 14-67

F

FakeMouse 7-23, 7-34
fAlert 25-85-86, 25-141
fAllocated 25-141
family 16-43
family 4-85
family name 8-3, 8-32, 8-41, 8-42
family number 8°4, 8-31, 8-32,

8-41, 8-42, 8-45
famNum 8-6, 8-51
FamNum2ltem!D 8-31, 8-36
FamSpecBits 8-11-12
FamStatBits 8-12

Index 1-7

fbrExtent 16-43, 16-53-54, 16-59,
16-216

fBScroll 25-85-86, 25-141
fClose 25-85-86, 25-141
fCtlTie 25-85-86, 25-120,

25-141
feed 15-12, 15-13, 15-48
FFGeneratorStatus 21-11-12
fFlex 25-85-86, 25-141
FFSoundDoneStatus 21-13
FFSoundStatus 21-14
FFStartSound 21-15-17
FFStopSound 21-18-20
ffSynth 21-37
ffSynthMode 21-36
fgColor 16-125
fgFbrExtent 16-62
fgFontlD 16-62
fGro w 25-85-86, 25-141
fgSize 16-62
fgStyle 16-62
fgVersion 16-62
fgWidMax 16-62
fHilited 25-85-86, 25-141
file format xxvii
fileinfoType 24-26
filename 22-20
fileName 22-24, 22-32
file type 22-23
fileType 22-24, 22-32
FillArc 16-94
filling 16-20
fill mode 16-34
FillOval 16-95
FillPoly 16-96, 16-103
FillRect 16-97
FillRgn 16-98
FillRRect 16-99
filter procedure 6-22, 6-25-26,

6-33, 6-37, 6-66, 22-22
standard 6-25

flmaging 15-41, 15-48
FindControl 4-10, 4-57-58
FindD!tem 6-48
FindFamily 8-15, 8-32-33
FindFontStats 8-15, 8-34-35
FindHandle 12-25

1-8 Index

FindWindow 4-10, 4-58, 5-26,
13-12, 13-66, 25-11,
25-48-49, 25-123, 25-124,
25-125, 25-126

f!nfo 25-85-86, 25-141
firmTaskErr 14-70, B-2
firstltem 13-19, 13-20, 13-88
FixAppleMenu 5-5, 5-6, 5-8, 5-15,

5-20
FixA Tan2 9-13
FixDiv 9-14
fixed block 12-7
fixed value xxx 9-1
fixed-width font 16-226
FixFontMenu 8-14, 8-15, 8-31,

8-36-37, 8-45, C-5
FixMenuBar 13-8, 13-9, 13-13, 13-

33, 13-41
FixMul 9-15
FixRatio 9-16, 16-217, 16-253
FixRound 9-17
Fix2Frac 9-10
Fix2Long 9-11
Fix2X 9-12
flag 2-7
FlashMenuBar 13-13, 13-41
f lashRate 14-65
flash320 16-275
flshBufHnd 14-68
flushADBDevBuf 3-21, 3-28
FlushEvents 7-14, 7-35, 7-39
flushKbd 3-20, 3-28
fMapTrshdErr 14-55, 14-70, B-2
fmBadFamNumErr 8-23, 8-26,

8-29, 8-35, 8-40, 8-41, 8-43,
8-46, 8-49, 8-52, B-5

fmBadNameErr 8-23, 8-42, 8-52,
B-5

fmBadSi zeErr 8-26, 8-29, 8-35,
8-40, 8-43, 8-46, 8-49, 8-52,
B-5

FMBootlnit 8-18
fmDupStartUpErr 8-20, 8-52, B-5
fmFamNotFndErr 8-24, 8-31,

8-45, 8-52, B-5
fmFontMemErr 8-49, 8-52, B-5
fmFontNtFndErr 8-40, 8-49,

8-52, B-5
FMGetCurFID 8-38

FMGetSysFID 8-39
fmMenuErr 8-31, 8-45, 8-52, B-5
fmNotAct i veEr r 8-21, 8-52, B-5
fMove 25-85-86, 25-141
FMReset 8-22
fmResetErr 8-22, 8-52, B-S
fmScaleSi zeErr 8-43, 8-52, B-5
FMSetSysFont 8-15, 8-19, 8-40
FMShutDown 8-15, 8-21
FMStartUp 8-15, 8-19-20
FMStatus 8-22
fmSysFontErr 8-49, 8-52, B-5
FMVersion 8-21
font 6-79, 8-1, 16-26

available 8-1, 8-25
best-fit algorithm 8-16, 8-43
Control Manager icon 4-11, 8-16
current 8-8, 16-26, 16-119,

16-224
current icon 25-109
icon 25-15, 25-109
real 8-7
system 8-8, 8-39, 8-40, 8-48,

16-147, 16-256
unreal 8-7

font bounds rectangle 16-53-54
font definition 16-41-44
font family 8-3, 8-28
font flags 16-120, 16-225-226,

16-274
fontFlags 16-30, 16-56, 16-277
font globals record 16-62, 16-118,

16-121, 16-276
fontHandle 16-26, 16-277
font ID 2-6, 8-6, 8-16, 16-122,

16-224, 16-277
font info record 16-62, 16-163,

16-226, 16-276
Font Manager 1-4, 1-7, 8-1-52,

10-45, 16-227
constants 8-50-51
data structures 8-51
error codes 8-52
shutdown routine 8-21
startup routine 8-19-20
status routine 8-22
using 8-14-16
version number routine 8-2 1

font record 16-41-44, 16-276
font rectangle 16-47-48, 16-51
font scaling 8-7-8, 8-44
font size 8-4
fontSize 8-6, 8-51
FontSpecBits 8-8, 8-11
FONTS subdirectory 8-1, 8-7,

8-15, 8-19, 8-42
FontStatBits 8-8- 10, 8-35
FontStatRec 8-10, 8-34, 8-51
font strike 16-26, 16-41, 16-44,

16-48-49
font style 8-5
fontStyle 8-6, 8-51
font substitution 15-7
fontWidth 16-61, 16-206, 16-276
ForceBufDims 16-58- 60, 16-100
foreground color 16-26, 16-54,

16-57, 16-125, 16-226, 16-228
foreground pixel 16-27, 16-30,

16-52
fPgDirty 15-41, 15-48
FPT. See function pointer table
fQCo ntent 25-85-86, 25-124,

25-1 4 1
FracCos 9-20
FracDiv 9-21
FracMul 9-22
FracSin 9-23
FracSqrt 9-24
Frac2Fix 9-18
Frac2X 9-19
frac value xxx, 9-1
fragmentation of memory 12-6- 8
FrameArc 16-101
frame color 25-99
frameColor 25-18, 25-142
FrameOval 16-102
FramePoly 16-103
FrameRect 16-104
frame region 25-9
FrameRgn 16-105
FrameRRect 16-106
frame type 25-69
framing 16-20
Free-Form Synthesizer playing

status 21-13
FreeMem 12-26

freqOffset 21-17, 21-37
FromDe s k 25-40, 25-139
FrontWindow 25-50, 25-56
fRScroll 25-85-86, 25-141
fstSpDelKey 14-65
fT i tl e 25-141
full native mode. See native mode
Jul/Pathname 22-24, 22-32
func NotFo u ndErr 24-7, 24-26,

B-2
function number A-3
function pointer table (FPD 24-7,

24-8, 24-19, A-2, A-6
fVis 25-85- 86, 25-141
FWEntry 6-22, 14-5, 14-17-18
fZoo m 25-85-86, 25-141
fZoo med 25-85-86, 25-112,

25- 141

G
GCB . See generator control block
gcbAddrTable 21-23, 21-36
genAvail 21-37
genBus y Err 21-15 , 21-37, B-3
gen8off 21-36
genlloff 21-36
generator 21-5
generator control block (GCB)

21-6, 21-11
address table 21-22, 21-23

generator status word 21-12
generator table 21-22, 21-23
generator-to-oscillator

translation 21-29
gene v a 8-4, 8-51
genOoff 21-19, 21-36
genloff 21-19, 21-36
gen2off 21-19, 21-36
gen3off 21-19, 21-36
gen4off 21-19, 21-36
gen Soff 21-19, 21-36
gen 6off 21-19, 21-36
gen7off 21-19, 21-36
gen9off 21-19, 21-36
genlOoff 21-19, 21-36
genl2off 21-19, 21-36
genl3off 21-19, 21-36
genl4off 21-19, 21-36
genTable 21-23, 21-36

GetAbsClamp 14-5, 14-38
GetAbsScale 3-15
GetAddr 7-22, 14-5, 14-19-21

parameter reference
numbers 14-20

GetAddress 16-107-108
GetAlertStage 6-49
GetArcRot 16-109
GetBackColor 16-55, 16-110
GetBackPat 16-111
GetBarColors 13-42-43
GetCaretTime 7-15, 7-36
GetCharExtra 16-55, 16-112
GetClip 16-40, 16-113
GetClipHandle 16-114
GetColorEntry 16-115
GetColorTable 16-116
GetContentDraw 25-51
GetContentOrgin 25-52
GetContentRgn 25-53
GetControlDitem 6-23, 6-50
GetCt!Action 4-59
GetCt!Dpage 4-60
GetCt!Params 4-61
GetCt!RefCon 4-62
GetCtlTitle 4-63
GetCt!Value 4-10, 4-64
GetCursorAdr 16-117
GetDAStrPtr 5-16
GetDataSize 25-54
GetDb!Time 7-13, 7-37
GetDefButton 6-24, 6-51
GetDeFProc 25-55
GetDeskP a t 25-41, 25-139
GetDe sktop 25-40, 25-139
GetDltemBox 6-52
GetDltemType 6-53
GetDltemValue 6-12, 6-54
GetErrGlobals 23-22
GetErrorDevice 23-23
GetFaminfo 8-15, 8-23, 8-41
GetFamNum 8-15, 8-23, 8-42
GetFGSize 16-62, 16-118
GetFGSizecalls 16-62
GetFirstD!tem 6-55
GetFirstWindow 25-56
GetFont 8-16, 16-119
GetFontFlags 16-56, 16-120

Index 1-9

GetFontGlobals 16-30, 16-62,
16-121, 16-124, 16-150

GetFontID 8-16, 16-122
GetFontinfo 16-62, 16-123
GetFontLore 16-30, 16-62,

16-118, 16-121, 16-124,
16-150

GetForeColor 16-55, 16-125
GetFrameColor 25-20, 25-57
GetFuncPtr 24-3, 24-7
GetGrafProcs 16-126
GetHandle 13-39
GetHandleSize 12-27
GetinfoDraw 25-58
GetlnfoRefCon 25-59
GetinGlobals 23-24
getlnitTotal 6-15, 6-88
getlnitValue 6-15, 6-88
getinitView 6-15, 6-88
GetinputDevice 23-25
GetIRQEnable 14-5, 14-23-24
GetIText 6-23, 6-56
GetListDefProc 11-18
GetMasterSCB 16-127
GetMaxGrow 25-60
GetMenuBar 13-44
GetMenuFlag 13-45
GetMenuMgrPort 13-46
GetMenuTitle 13-47
getMessage 24-15, 24-26
GetMHandle 13-39, 13-48
GetMitem 13-16, 13-49
GetMitemFlag 13-50
GetMitemMark 13-6, 13-51
GetMitemStyle 13-6, 13-52
GetMouse 7-14, 7-38
GetMouseClamp 14-31
GetMTitleStart 13-53
GetMTitleWidth 13-54
GetNewDitem 6-23, 6-57-58
GetNewID 12-11, 12-35, 14-57- 58
GetNewModa!Dialog 6-7, 6-23,

6-59-60, 22-4
GetNextDitem 6-61
GetNextEvent 4-10, 5-3, 6-33,

6-63, 6-66, 7-5, 7-12, 7-33,
7-39-40, 13-11, 25-11, 25-12,
25-118, 25-119

Desk Manager and 7-40
GetNextWindow 25-56, 25-61

1-10 Index

GetNumNDAs 5-17
GetOSEvent 7-41
GetOutGlobals 23-26
GetOutputDevice 23-27
GetPage 25-62
GetPen 16-128
GetPenMask 16-129
GetPenMode 16-130
GetPenPat 16-131
GetPenSize 16-132
GetPenState 16-133
GetPicSave 16-134
GetPixel 16-135
GetPolySave 16-136
GetPort 16-39, 16-137, 25-21
GetPortLoc 16-138
GetPortRect 16-139
GetRectinfo 25-63
GetRgnSave 16-140
GetRomFont 16-141-142
GetSCB 16-143
GetScrap 20-5, 20-6, 20-10
GetScrapCount 20-5, 20-11
GetScrapHandle 20-12
GetScrapPath 20-13
GetScrapSize 20-14
GetScrapState 20-15
GetScroll 25-64
GetSoundVolume 21-21
GetSpaceExtra 16-55, 16-144
GetStandardSCB 16-145
GetStructRgn 25-65
GetSysBar 13-55
GetSysField 16-146
GetSysFont 16-147
GetSysWFlag 25-66
GetTableAddress 21-6, 21-22-23
GetTextFace 16-56, 16-148
GetTextMode 16-55, 16-149
GetTextSize 16-150
GetTick 14-22
GetTSPtr 24-3, 24-8
GetUpdateRgn 25-67
GetUserField 16-151
GetVector 7-23, 14-5, 14-61,

14-63
Ge t VisDesktop 25-41, 25-139
GetVisHandle 16-152
GetVisRgn 16-153
GetWAP 24-3, 24-9

GetWControls 25-68
GetWFrame 25-69
GetWKind 25-70
GetWMgrCon 25-72
GetWMgrPort 25-71
GetWTitle 25-73
GetZoomRect 25-74
global coordinates 4-50, 16-9,

16-16, 16-39, 16-154, 16-173,
25-29, 25-47

GlobalToLocal 16-39, 16-154
go-away region 25-9, 25-127
good 22-24, 22-32
GrafOff 16-155
GrafOn 16-155
GrafPort 16-14-15, 16-39, 16-187,

16-241, 16-277, 25-17
current 16-241
standard 16-187

grafProcs 16-126, 16-229,
16-277

graphic object 16-21
graphic port 16-9, 16-14
graphics tablet 7-21
gray scales 15-16, 15-17
green320 16-274
green64 0 16-274
greenMask 16-274
grid values 25-45
growBox 4-86
growColor 25-13, 25-142
grow image 25-75-76
growNorBack 4-24
growOutline 4-24
growProc 4-13, 4-23, 4-73, 4-85
grow region 25-9, 25-11
GrowSize 4-65
GrowWindow 25-11, 25-75-76,

25-125

H
halt mechanism 18-8
halt vector 18-6, 18-8, 18-9
handle xxx, 12-5-6

empty 12-8
handleErr 12-22, 12-24, 12-27,

12-28, 12-29, 12-30, 12-32,
12-38, 12-40, 12-41, 12-42,
12-43, 12-44, 12-47, B-2

HandToHand 12-28
HandToPtr 12-29
hardware interrupt enable states

14-23
hAxisOnly 4-53, 4-86
hbQueueBadE r r 14-70, B-2
header section 5-3, 5-6
HeartBeat Interrupt Handler

14-22, 14-27, 14-49
HeartBeat Interrupt Task

queue 14-5, 14-27, 14-48,
14-50, 14-52, 14-53

helveti c a 8-4, 8-51
Hexit 9-27
Hex2Int 9-25
Hex2Long 9-26
HideControl 4-10, 4-45, 4-66,

11-11
HideCursor 16-156
HideDitem 6-24, 6-62, 6-81, 6-85
HidePen 16-156, 17-9, 17-14
HideWindow 25-11, 25-78, 25-99,

25-113, 25-114
high-level Event Manager 7-3
highlighted control 4-7
high-order word 9-28
HiliteControl 4-7, 4-67, 6-11, 6-40,

11-11
HiliteMenu 13-11, 13-12, 13-56,

13-66, 25-122, 25-123
HiliteWindow 25-36, 25-79
hiMouseRes 14-65
HiWord 9-28
HLock 12-15, 12-30
HLockAII 12-15, 12-31
HomeMouse 14-32
horizontal resolution

movement 25-45
horScroll 4-22, 4-72, 4-85
hot spot 16-37
hPic 15-41, 15-48
hPrint 15-41, 15-48
hrtz50or60 14-64
Human Interface Guidelines XXVlll,

6-7, 6-8, 6-18, 6-22, 6-25 ,
10-1, 13-1, 13-7, 13-9, 15-20,
25 -79

HUnlock 12-15, 12-32
HUnlockAII 12-15, 12-33

icon 17-3, 17-11
note 6-74
stop 6-86

icon font 4-65, 4-75, 8-16, 25-15,
25-109

iconlmage 6-90
iconitem 6-10, 6-88
icon record, QuickDraw II

Auxiliary 17-3-4, 17-11
iconRect 6-90
iCopies 15-14
iCurBand 15-41, 15-48
iCurCopy 15-41, 15-48
iCurPage 15-41, 15-48
idErr 12-17, 12-23, 12-31, 12-33,

12-36, 12-39, 12-41, 12-45,
12-47, B-2

iDev 15-11, 15-47
ID number 13-14, 13-16, 13-79
idTagNtAvlErr 14-57, 14-60,

14-70, B-2
iFileVol 15-14, 15-15, 15-48
iFstPage 15-14, 15-21, 15-48
iHRes 15-11, 15-47
iLstPage 15-14, 15-21, 15-48
image pointer 16-13
image width 16-44
Image Writer

job dialog box 15-8-9
style dialog box 15-6-7

imBadinptParam 9-34, 9-38,
9-39, 9-42, B-4

IMBootlnit 9-5
imillegalChar 9-8, 9-9, 9-25,

9-26, 9-42, B-4
i mOverflow 9-8, 9-9, 9-25, 9-26,

9-42, B-4
IMReset 9-7
IMShutDown 9-4, 9-6
IMStartUp 9-4, 9-5
IM Status 9-7
imStrOverflow 9-29, 9-30, 9-31,

9-33, 9-42, B-4
IMVersion 9-6
inactive control 4-7, 4-8
inactiveCtl 4-7
inactiveHilite 4-67, 4-86
inactive window 25-8, 25-11,

25-24, 25-92

inButton 6-89
incBsyFlag 14-68
inCheckBox 6-89
#include statement 2-6
indicator 4-4, 4-8, 4-83
inDownArrow 6-89
inEditLine 6-89
infinity 9-40
InflateTextBuffer 16-61, 16-157
infoColor 25-20, 25-142
information bar 25-6, 25-11,

25-49, 25-58, 25-59, 25-63,
25-88, 25-101, 25-102, 25-117

inGrow 6-89
iniconitem 6-89
InitColorTable 16-158- 159
initCtl 4-25, 4-29, 4-86
InitCursor 16-160
InitMouse 14-32
InitPalette 13-56
InitPort 16-161
InitTextDev 23-28
InitTextDev 23-6
inLongStatText 6-89
inLongStat Text2 6-89
inPageDown 6-89
inPageUp 6-89
input 23-46
input parameter 2-6
input text device 23-4, 23-24,

23-25, 23-29, 23-30, 23-34,
23-35, 23-40

inRadioButton 6~9
insertion point 6-78, 10-8, 10-10,

10-11
InsertMenu 13-8, 13-13, 13-57
InsertMitem 13-13, 13-58
InsetRect 16-162
I nsetRgn 16-163
InstallCDA 5-18
InstallFont 8-14, 8-16, 8-43-44,

10-30
InstallNDA 5-19
inst at Text 6-89
integer xxx, 9-1
Integer Math string 9-1
Integer Math string routines 1-8,

9-4

Index 1-11

Intege r Math Tool Set 1-4, 1-7-8,
9-1- 42

constants 9-42
error codes 9-42
shutdown routine 9-6
startup routine 9-5
status routine 9-7
using 9-4
version number routine 9-6

integer value 9-1
interface file 2-5, 2-7
interface library 2-6
interrupt enable states 14-23
interrupt handler 14-5, 19-1, 19-3,

21 -27
one-second 14-27- 28
quarter-second 14-28- 29

interrupt mode 16-34
interrupt source 14-5

reference numbers 14-26
inThu mb 6-89
intrptMgr 14-67
IntSource 14-5, 14-25-29
Int2Dec 9-29
Int2Hex 9-27, 9-30
inUpArrow 6-89
inUserltem 6-89
invalGe nNu mErr 21-13, 21-15,

21-37, B-5
invalidCtl Va l 15-49
Inva!Rect 10-36, 10-39, 25-80
InvalRgn 25-81
InvertArc 16-164
inverting 16-20
InvertOval 16-165
InvertPoly 16-166
InvertRect 16-167
InvertRgn 16-168
InvertRRect 16-169
I/0 directing routines 23-3-4
irqActive 14-66
irqApl TlkHi 14-66
irqDataReg 14-66
irqlntFlag 14-66
irqSer.iall 14-66
irqSerial2 14-66
irqSndData 14-66
irqVolum~ 14-66
IsDialogEvent 6-24, 6-38, 6-63-64
italic convention xxxi
italicMask 16-276

1-12 Index

italic typ e style 16-258, 17-1, 17-3
ite m character 13-13
itemColor 6-9, 6-18, 6-90
itemDescr 6-9, 6-90
item descriptor 6-12-16
itemDisable 6-11, 6-53, 6-82
itemFlag 6-9, 6-18, 6-90
item ID 6-18, 6-55, 6-61, 13-14
item!D 6-9, 6-90
Ite mID2FamNum 8-36, 8-45
item line 13-13, 13-14, 13-75
item list 13-17
itemNotFound 6-40, 6-46, 6-50,

6-53, 6-54, 6-56, 6-62, 6-76,
6-81, 6-82, 6-83, 6-84 , 6-85,
6-90, B-5

item numbe r 13-22
itemRect 6-9, 6-90
item template 6-8-9, 6-19 , 6-58
item type 6-10-11, 6-53
itemType 6-9, 6-90
item value 6-12-16, 6-54
itemValue 6-9, 6-90
iTotBands 15-41, 15-48
iTotCopies 15-41, 15-48
iTotPages 15-41, 15-48
iVRes 15-11 , 15-47

J
jcButton 7-51
j cEvent 7-51
jcGetMouse 7-51
jcTickCount 7-51
job dialog box 15-1, 15-12, 15-20

ImageWriter 15-8-9
job subrecord 15-9, 15-14-15,

15-37
journal codes 7-20
journaling mechanism 7-19- 20
jump table 21-6, 21-22-23
jump table address 21-22- 23
justification 10-4, 10-6, 10-7,

10-11, 10-36, 10-40, 10-42

K
kbdl nt 14-24, 14-66
ke rning 16-27, 16-29, 16-45-46,

16-58

kernMax 16-47, 16-50
keyboard 3-22
keyboard equivalent 7-13, 13-7,

13-61-62
keyboard interrupts 14-27
keyboard interrupt vector 7-15
keyboard microcontroller 3-17,

3-18
key code 3-22
ke yCode 3-20, 3-28
key-down event 6-39, 6-66, 7-3,

7-13
ke yDownEvt 7-7, 25-120
keyDo wnMas k 7-11, 7-50
keyPad 7-9, 7-51
KillControls 4-9, 4-68, 11-11 ,

11-16
KillPicture 17-5, 17-13
KillPoly 16-40, 16-170
kybdBuffer 14-65
kybdDisable 14-26, 14-67
kybdEnable 14-26, 14-67
kybdlntHnd 14-68
kybdLang 14-65
kybdMicHnd 14-68
kybdRepDel 14-65
kybdRe pSpd 14-65

L
landscape mode 15-6
langCount 14-65
langl 14-65
lang2 14-65
lang 3 14-65
lang4 14-65
langS 14-65
lang6 14-65
lang7 14-65
lang8 14-65
language card 12-3
language specification xxvii
lastBlock 21-37
layoutCount 14-65
layoutl 14-65
layout 2 14-65
layout3 14-65
l ayout 4 14-66
layouts 14-66
layout 6 14-66
layout 7 14-66

layouts 14-66
layout 9 14-66
layout 10 14-66
layoutll 14-66
layoutl2 14-66
layoutl3 14-66
layoutl4 14-66
layoutlS 14-66
layoutl 6 14-66
leActFlg 10-5, 10-47
LEActivate 10-11, 10-16
leading 16-48, 16-62 , 16-276
leBaseHite 10-5, 10-7, 10-47
LEBootlnit 10-12
leCarAct 10-5, 10-47
leCaretHook 10-5, 10-9, 10-47
leCarOn 10-5, 10-47
leCarTime 10-5, 10-47
LEC!ick 10-10, 10-17
LECopy 10-10, 10-18
LECut 10-10, 10-19
LEDeactivate 10-11, 10-20
LEDelete 10-10, 10-21
leDestRect 10-5, 10-6-7, 10-47
LEDispose 10-22, 10-30
leDupStrtUpErr 10-13, 10-48,

B-5
LEFromScrap 10-9, 10-11, 10-23,

20-10, C-4
Left Arrow 10-1, 10-29
leftFlag 4-22, 4-72, 4-85
leftward kern 16-45-46, 16-50
LEGetScrapLen 10-10, 10-23
LEGetTextHand 10-10, 10-24
LEGetTextLen 10-10, 10-25
leHi/iteHook 10-5, 10-9, 10-47
LE!dle 10-10, 10-26
LE!nsert 10-10, 10-27
lejust 10-5, 10-47
leJustCenter 1~47
leJustFill 10-47
leJustLeft 10-47
leJustRight 10-47
LEKey 10-10, 10-28-29
lelength 10-5, 10-47
lelineHandle 10-5, 10-47
lelineHite 10-5, 10-47
leMaxlength 10-5, 10-47
LENew 10-10, 10-22, 10-30-31,

10-36

leNotActiveErr 10-14, 10-48,
B-5

LEPaste 10-10, 10-32
lePort 10-5, 10-47
LEReset 10-15
leResetError 10-15, 10-48, B-5
leScrapErr 10-23, 10-48, B-5
LEScrapHandle 10-33
leSelEnd 10-5, 10-7, 10-47
leSe/Start 10-5, 10-7, 10-47
LESetCaret 10-9, 10-11, 10-34
LESetHilite 10-9, 10-11, 10-35
LESetJust 10-11, 10-36
LESetScrapLen 10-37
LESetSelect 10-10, 10-38
LESetText 10-11, 10-39
LEShutDown 10-10, 10-14, 10-22
LEStartUp 10-10, 10-13
LEStatus 10-15
LETextBox 10-11 , 10-40-41
LETextBox2 10-9, 10-11 , 10-40,

10-42-44, C-4
LEToScrap 10-9, 10-11, 10-45,

20-16, C-4
LEUpdate 10-11, 10-46
LEVersion 10-14
leViewRect 10-5, 10-6-7 , 10-47
lightBlue320 16-274
lightGray320 16-274
light pen 7-21
lilac320 16-275
limit rectangle 4-50, 4-53
line 16-22
Line 16-40, 16-171
LineEdit scrap 10-11, 10-13,

10-18, 10-19, 10-23, 10-33,
10-37, 10-45, 20-5

handle 10-33
LineEdit Tool Set 1-3, 1-8, 6-11,

10-1-48
constants 10-47
data structures 10-47
error codes 10-48
shutdown routine 10-14
startup routine 10-13
status routine 10-15
using 10-9-11
version number routine 10-14

LineTo 16-40, 16-103, 16-172

list 11-1
sorting 11-23

ListBootlnit 11-13
list control 11-2, 11-8
list control record 11-8-10

creating 11-16
listCtl 11-3, 11-5, 11-25
listDraw 11-3, 11-5, 11-25
listen 3-28
listFrameClr 11-10, 11-26
List Manager 1-4, 1-8, 11-1-26

constants 11-25
data structures 11-25-26
shutdown routine 11-14
startup routine 11-13
status routine 11-15
using 11-11
version number routine 11-14

listMemHeight 11-3, 11-6, 11-25
listMemSize 11-3, 11-6, 11-25
listNorBackClr 11-10, 11-26

listNorTextC/r 11-10, 11 -26
/istPointer 11-3, 11-6, 11-25
list record 11-2-8, 11-16
listRect 11-3, 11-4, 11-25
listRe/Con 11-3, 11-7, 11-25
ListReset 11-15
/istScrol/Clr 11-3, 11-7, 11-25
listSelBackC/r 11-10, 11-26
listSelect 11-4, 11-5, 11-12
listSe/TextClr 11-10, 11-26
ListShutDown 11-11, 11-14
listSize 11-3, 11-4, 11-25
/istStart 11-3, 11-5, 11-25
ListStartUp 11-11, 11-13
ListStatus 11-15
li stst ring 11-4, 11-5
listType 11-3, 11-4, 11-12, 11-25
ListVersion 11-14
listView 11-3, 11-4, 11-25
LoadFont 8-15, 8-46-47
loading tool set 2-3-4
LoadOneTool 22-13, 22-16, 22-17,

24-3, 24-10
LoadScrap 20-15
LoadSysFont 8-48
LoadTools 2-3, 24-3, 24-11-13,

24-25

Index 1-13

local coordinates 4-8, 4-50, 4-69,
16-9, 16-16-17, 16-39,
16-154, 16-173, 25-30, 25-31,
25-82

LocalToGlobal 16-39, 16-40,
16-173

location table 16-44, 16-49- 50
loclnfo record 16-13, 16-14,

16-138, 16-242, 16-277, 17-10
locked movable block 12-7
lockErr 12-36, 12-39, 12-40,

12-41, 12-43, 12-47, B-2
locking block, memory 12-30,

12-3 1
locSi ze 16-274
london 8-4, 8-51
LongDivide 9-34
longint value xxx, 9-1
LongMul 9-35
longStatText 6-10, 6-12, 6-17,

6-88
longStatText2 6-10, 6-12, 6-17,

6-88
Long2Dec 9-31
Long2Fix 9-32
Long2Hex 9-33
losAngeles 8-4, 8-51
lostDev 23-15, 23-47, B-4
lostFile 23-15, 23-47, B-4
low-level Event Manager 7-3
low-level sound routine 21-1, 21-6,

21-35
jump table 21-23

LoWord 9-36
low-order word 9-36

M
MacGen 2-5
Macintosh font record 16-41
macro file 2-5
main/D 12-10, 14-58
MapPoly 16-174
MapPt 16-175
MapRect 16-176
MapRgn 16-177
marked menu item 13-80
mask drawing 16-18
masleHandle 16-191, 16-277
maskSize 16-274

1-14 Index

master color 16-31, 16-274-275
master color value 16-3 1, 16-35
master pointer 12-5
master scan line control byte. See

master SCB
master SCB 2-2, 16-127, 16-160,

16-231
master user ID 12-10- 11, 12-14,

12-15, 12-23, 12-35
mastrIRQNotAssgnErr 21-37
math routine 9-4
MaxBlock 12-26, 12-34, 15-20,

15-22, 15-30
maxFbrExtent 16-59-60
maxFixed 9-42
maxFontHeight 16-59-60
maxFrac 9-42
maximum content height 25-87
maximum content width 25-87
maxint 9-42
maxitemType 6-88
maxLong int 9-42
maxUint 9-42
maxULong 9-42
maxWidth 16-59-60, 16-61,

16-206, 16-276
mChooseMsg 13-22, 13-24, 13-87
MCOPY assembler directive 2-5
mCustom 13-87
mDisabled 13-87
mDownMask 7-11, 7-50
mDrawMitem 13-22, 13-27, 13-87
mDr awMsg 13-22, 13-23, 13-87
mDrawTitle 13-22, 13-26, 13-87
mechanical specification xxvi
member record 11-6

disabled 11-6
drawing 11-17
selected 11-6, 11-12, 11-20,

11-2 1, 11-22
sorting 11-23

memBit 8-9, 8-10, 8-50
memDi sabled 11-6, 11-25
memErr 12-19, 12-36, 12-41,

12-42, 12-43, 12-47, B-2
memFlag 11-6, 11-20, 11-21,

11-26
memOnlyBit 8-11, 8-50

memory
allocating private 12-11
allocation 12-35
attributes 12-12, 12-37
compaction 12-5-7, 12-15,

12-22
deallocation 12-23, 12-25
expansion 12-3
fragmentation 12-6-8
limits 12-3
locking 12-30, 12-31
purging 12-39, 12-40, 12-44,

12-45
reallocation 12-41, 12-42
unlocking 12-32, 12-33

memory attributes word 12-12-13,
12-37

memory block 12-1, 12-5
attributes 12-12-13, 12-37
locking 12-30, 12-31
purging 12-8- 10, 12-13, 12-39,

12-40, 12-44, 12-45
unlocking 12-32, 12-33

memory handle 12-5
Memory Manager 1-3, 1-9, 2-1,

2-2, 12-1- 47
constants 12-47
error codes 12-47
shutdown routine 12-18
startup routine 12-17
status routine 12-20
version number routine 12-19

memory space 12-1
memPtr 11-6, 11-26
m emSelect 11-6, 11-20, 11-21
memSelected 11-6, 11-25
menu 13-1

pull-down 1-3, 13-1
menu bar 13-4-5. See also system

menu bar
window 13-5

menu bar color 13-18, 13-42-43,
13-69-70

menu bar record 13-17-18
MenuBootlnit 13-29
menu color 13-17
menu definition procedure

13-21-28
menuFlag 13-19, 13-20, 13-21,

13-23, 13-88

MenuGlobal 13-59-60
menu global mask 13-59-60
menu height 13-33
menuHeight 13-19, 13-21, 13-25,

13-88
menu help 13-60
menu ID 13-14, 13-16
menu/D 13-19, 13-21, 13-88
menu item 13-6, 13-50

blinking 13-76
checking 13-34
dimming 13-6, 13-38, 13-60
disabling 13-6, 13-38
marking 13-51, 13-80
text style 13-52, 13-83
underlining 13-15-16, 13-77

menu item ID 8-31, 8-45, 13-14,
13-79

menu item line 13-13, 13-75
menu item number 13-22
MenuKey 13-6, 13-11, 13-61-62,

25-120
menu line 13-13, 13-14
MenuLine 5-8
menu list 13-13-15, 13-17
menuList 13-17, 13-18
Menu Manager 1-3, 1-9-10, 5-20,

13-1-88
constants 13-87
data structures 13-88
port 13-46
shutdown routine 13-31
startup routine 13-30
status routine 13-32
using 13-7- 13
version number routine 13-31

menu messages 13-22
MenuNewRes 13-63
menu position 13-17
menuProc 13-19, 13-20, 13-21,

13-88
menu record 13-19-20, 13-21,

13-48, 13-88
MenuRefresh 13-13, 13-64-65
MenuReset 13-32
MenuSelect 13-12, 13-66, 25-11,

25-120, 25-121
MenuShutDown 13-7, 13-31
MenuStartUp 13-7, 13-8, 13-30,

13-68

MenuStatus 13-32
menu title 13-47, 13-53, 13-54,

13-74
MenuVersion 13-31
menu width 13-33
menuWidth 13-19, 13-21, 13-25,

13-88
message 7-6, 7-8, 7-43, 7-51
MessageCenter 24-3, 24-14-15

action codes 24-15
message type 24-14
messNotFoundErr 24-14, 24-26,

B-2
mGetMitemID 13-22, 13-87
minFixed 9-42
minFrac 9-42
minimum blink interval 10-26
minimum version 2-4
minimum version number 24-10,

24-11
minint 9-42
minipalette 16-33, 16-35
minitemType 6-88
min Long int 9-42
m!nvis 13-87
Miscellaneous Tool Set 1-3,

1-10-11, 2-1, 14-1-70
constants 14-64-68
data structures 14-69
error codes 14-70
shutdown routine 14-7
startup routine 14-6
status routine 14-8
using 14-4-5
version number routine 14-7

missing character 16-48-49
missingDriver 15-26, 15-49, B-5
missing symbol 16-48-50
mitemDi sable 13-78
mitemEnable 13-78
MMBootlnit 12-16
MMReset 12-19
MMShutDown 12-14, 12-18, 12-23
MMStartUp 2-1, 12-10, 12-14,

12-17, 12-18
MMStatus 12-20
MMVersion 12-19
Moda1Dialog 6-24, 6-65-66
Moda1Dialog2 6-07
modal dialog box 6-5

mode 16-191, 16-277
modeBIC 16-19, 16-20, 16-235,

16-275
modeCopy 16-19, 16-20, 16-235,

16-275
modeForeBIC 16-30, 16-260,

16-275
modeForeCopy 16-30, 16-260,

16-275
modeForeOR 16-30, 16-260,

16-275
modeForeXOR 16-30, 16-260,

16-275
modeless dialog box 6-5, 6-63
modeOR 16-19, 16-20, 16-235,

16-275
modeXOR 16-19, 16-20, 16-235,

16-275
modifiers 7-6, 7-8, 7-43, 7-51
modifier key 7-3
monaco 8-4, 8-51
mouse button 4-46
mouseClamps 14-21, 14-66
mouse clamp value 2-2, 7-27
mouse-down event 4-10, 5-26,

6-39, 6-64, 6-66, 7-3, 7-8,
7-13, 25-11, 25-48- 49, 25-92,
25-127, 25-129-130

mouseDownEvt 7-7, 7-50, 25-120,
25-121

mouse interrupt status 14-35
mouseintHnd 14-68
mouse location 16-37
mouse mode 14-36
mouseOff 14-36, 14-67
mou seOf fVI 14-36, 14-67
mouse routine 14-5
mouseSlot 14-66
mouse-up event 7-3, 7-13
mouseUpEvt 7-7, 7-50
Move 16-40, 16-178
MoveControl 4-10, 4-69, 11-11
moveCtl 4-25, 4-39, 4-86
moveintrpt 14-36, 14-67
moveintrptVI 14-36, 14-67
movement constraint values 4-53
MovePortTo 16-179
MoveTo 16-40, 16-180, 25-22
MoveWindow 25-44, 25-82, 25-138

Index 1-15

mSelected 13-87
msgPt r Vctr 14-68
mSizeMsg 13-22, 13-25, 13-87
mstrIRQNotAssgnErr B-3
MTBootlnit 14-6
MTReset 14-8
MTShutDown 14-4, 14-7
MTStartUp 2-1, 14-4, 14-6
MTStatus 14-8
MTVersion 14-7
Multiply 9-37
Munger 14-5, 14-45-47
mUp Mask 7-11, 7-50
mvE scape 24-26
mvRet u r n 24-26
mX or 13-87

N
NaN 9-40, 9-41
native mode 1-2, 1-4
NDA header section 5-19
newBarColor 13-70
NewControl 4-9, 4-24, 4-70- 73,

11-11, 25-68
new desk accessory 5-1

action codes 5-7
total number installed 5-17

NewDitem 6-23, 6-68-69
NewHandle 12-15, 12-35-37,

15-19
newlnvertColor 13-70
n e witemFai led 6-57, 6-69, 6-90,

B-5
NewList 11-19
NewMenu 13-8, 13-16, 13-21,

13-67
NewMenuBar 13-68
NewModa!Dialog 6-7, 6-23,

6-70-71
NewModelessDialog 6-7, 6-23,

6-72-73
newOut Color 13-70
NewRgn 16-40, 16-74, 16-113,

16-153, 16-181
newVa l ue 4-25, 4-37, 4-86
NewWindow 25-11 , 25-16, 25-21,

25-25, 25-38, 25-83- 88
NewWindow parameter list 25-142
n e wYor k 8-4, 8-51

1-16 Index

NextMember 11-20
nextWavePtr 21-17, 21-37
noConstr a i n t 4-53, 4-86
noDevice 23-15, 23-47, B-4
noDevP a ramErr 14-32, 14-70, B-2
noDi s play 22-22, 22-32
n oDOCFn d Er r 21-8, 21-24, 21-28,

21-37, B-3
noEch o 23-46
noFile 23-15, 23-47, B-4
n oHilite 4-67, 4-86
nonreentrant code 19-1
nonspecial memory 12-3
noPart 4-86
noPrintRecord 15-49, B-5
normal memory 12-3
noRoom 23-15 , 23-47, B-4
noS AppinitErr 21-15, 21-37, B-3
noSelect 22-22, 22-32
noSig TaskErr 14-48, 14-70, B-2
not Ba seBit 8-12, 8-50
notBIC 16-19, 16-20, 16-235,

16-275
notClosed 23-15 , 23-47, B-4
notCopy 16-19, 16-20, 16-235,

16-275
notDiskBit 8-9, 8-50
note alert 6-6
NoteAlert 6-24, 6-74
note icon 6-74
notEmpt y Err 12-41 , 12-42,

12-47, B-2
NotEmptyRect 16-182
notEqualChunkiness 16-190,

16-197, 16-278, B-3
Note Sequencer 1-4 , 21-1
noteSynth 21-37
Note Synthesizer 1-4, 21-1
noteSynthMode 21-36
notForeBIC 16-30, 16-260,

16-275
notForeCOPY 16-30, 16-260,

16-275
notForeOR 16-30, 16-260, 16-275
notFore XOR 16-30, 16-260,

16-275
notFoundBit 8-12, 8-50
not!mplemented 16-278
notinitialized 16-278, B-3

not Modal Dia log 6-65, 6-67,
6-90, B-5

notOpen 23-16, 23-47, B-4
notOR 16-19, 16-20, 16-235,

16-275
n ot Sy s Wind o w 5-14, 5-30, B-3
n ot XOR 16-19, 16-20, 16-235,

16-275
no UnderMit em 13-78, 13-87
n ullEvt 7-7, 7-50, 25-119
number of copies 15-8
numeric spacing 16-226
numOfltems 13-19, 13-20, 13-88

0
object module format xxvii
0 bscureCursor 16-182
offseToMF 16-43, 16-276
offset point 4-50
OffsetPoly 16-183
OffsetRect 16-184
OffsetRgn 16-185
offset/width table 16-44 16-50-51
ok 6-89 '
OK button 6-4, 6-5, 6-18, 6-58
okDefault 6-89
oneSecHnd 14-68
oneSecint 14-24, 14-66
one-second interrupt handler

14-27-28
Open File dialog box 22-3, 22-4,

22-21, 22-25-26
OpenNDA 5-6, 5-20, 25-122
OpenPicture 15-38, 17-5, 17-9,

17-14
OpenPoly 16-40, 16-186
OpenPort 16-39, 16-161, 16-187,

25 -42
OpenRgn 16-40, 16-74, 16-187
operating system xxviii
opt ion Key 7-9, 7-51
Option-Left Arrow 10-1, 10-29
Option-Right Arrow 10-1, 10-29
orange32 0 16-275
origin 4-8, 16-16, 25-29-31,

25-52, 25-95, 25-96, 25-104,
25-116

origin mask 25-104
oscillator register 21-5

oscillator table 21-22, 21-23
oscillator-to-generator translation

table 21-5
oscTab le 21-36
o Se cD isable 14-24, 14-67
oSe cEnab le 14-24, 14-67
OSEventAvail 7-42
o sVecto r 14-68
ot he ri nt Hn d 14-68
outlineMask 16-276
outline type style 16-258, 17-1,

17-3
outOfMemErr 14-56, 14-70, B-2
output 23-46
output parameter 2-6
output sample rate 21-17
output text device 23-4, 23-26,

23-27, 23-37, 23-38, 23-41,
23-42, 23-43 , 23-44, 23-45

oval 16-23, 16-89, 16-95, 16-102,
16-165, 16-189

p

p a ckagelErr 14-55, 14-70, B-1
package2E r r 14-55, 14-70, B-1
package3Err 14-55, 14-70, B-1
package4Err 14-55, 14-70, B-1
packageS Err 14-55, 14-70, B-1
package 6Err 14-55, 14-70, B-1
package 7 Err 14-55, 14-70, B-1
packageBErr 14-55, 14-70, B-1
package9Err 14-56, 14-70, B-1
packagelOErr 14-56, 14-70, B-2
packagellErr 14-56, 14-70, B-2
package12Err 14-56, 14-70, B-2
PackBytes 14-5, 14-39---41, 14-42
page 4-5
page-aligned memory block 2-2,

12-12, 12-13
pageDown 4-86
page range 15-8, 15-38
page rectangle 15-11
page region 25-62, 25-105
page setup 15-1
pageUp 4-86
paging region 4-5, 4-8
PaintArc 16-188
painting 16-20
PaintOval 16-189

PaintPixels 16-190-191
PaintPixels parameter block

16-191, 16-277
PaintPoly 16-192
PaintRect 16-193
PaintRgn 16-194
PaintRRect 16-195
palette 16-32

standard in 320 mode 16-35
standard in 640 mode 16-36

papCon n NotOp e n 15-36, 15-42,
15-49, B-5

paper source 15-8
paperType 15-12, 15-13, 15-48
papRe a d Wr i teErr 15-36, 15-42,

15-49, B-5
parameter

Battery RAM reference
numbers 14-12

definition xxix
DragRect 4-50-53
GetAddr reference numbers

14-20
input 2-6
length xxx
NewControl 4-71-73
output 2-6
passing 2-6
pseudo-type xxx

paramLe n Err 25-83, 25-144, B-4
paramlength 25-84, 25-142
paraml 6-90
param2 6-90
ParamText 6-24, 6-75
part code 4-8, 4-57, 4-67, 4-81,

4-82, 4-83, 4-84, 6-67
Pascal device driver 23-3
Pascal string 5-3, 16-26
pasca l Ty pe 23-46
paste 5-30
pasteAction 5-7, 5-30
Paste command 6-44, 20-1, 20-6
pat S i ze 16-274
pattern 16-265
pdo sB1k 0 Er r 14-55, 14-70, B-1
pdosFCBErr 14-55, 14-70, B-1
pdosintShdwEr r 14-55, 14-70,

B-1
pdosUnClmdintErr 14-55, 14-70,

B-1

pdosVCBErr 14-55, 14-70, B-1
pen displacement 16-29, 16-56,

16-70, 16-77 , 16-267, 16-270
pen level 16-156, 16-265
pen location 16-17, 16-18, 16-22,

16-26, 16-40, 16-80, 16-81,
16-82, 16-83, 16-128, 16-178,
16-180, 16-196

pen mask 16-129, 16-233
pen mode 16-19- 20, 16-22,

16-130, 16-234- 235, 16-275
PenNormal 16-196
pen pattern 16-18- 19, 16-131,

16-236, 16-252
pen size 16-18, 16-22, 16-132,

16-237
pen state 16-133, 16-196, 16-238
pen state record 16-238
PenState record 16-278
p er i winkleBlue 16-274
pFileName 15-14, 15-15, 15-48
PicComment 17-5, 17-15
p icitem 6-10, 6-12, 6-88
picSave 16-134, 16-239,

16-277, 17-14
picScrap 20-4, 20-19
picture 16-25, 17-1, 17-2-3
picture definition 17-14
p!dleProc 15-14, 15-15, 15-24,

15-48
pinning 9-3
PinRect 25-89-90
pixel 16-10- 11, 16-135, 16-197,

16-200, 16-201
background 16-28, 16-30
chunky 16-31
foreground 16-27, 16-30
region 16-190

pixel image 2-2, 16-9, 16-12-14,
16-48, 17-10

place-holding character 5-8
plane 25-8
PMBootlnit 15-25
PMReset 15-28
PMShutDown 15-19, 15-27
PMStartUp 15-19, 15-26
PMStatus 15-28
PMVersion 15-27
pnStateSize 16-274

Index 1-17

point xxx, 8-4, 16-11-12,
16-21-22, 16-40, 16-68,
16-85, 16-135, 16-154,
16-175, 16-199, 16-200,
16-201, 16-207, 16-268, 25-89

POINTER XXX

pointing device 7-21-25, 7-27,
7-34, 14-5

poll ing, Apple Desktop Bus 3-3
p o lyAl r eadyOp en 16-186,

16-278, B-3
polygon 16-24- 25, 16-40, 16-72,

16-90, 16-96, 16-103, 16-166,
16-170, 16-174, 16-183,
16-186, 16-192

pol yN otOpe n 16-72, 16-278, B-3
polySave 16-136, 16-240, 16-277
polyT ooB ig 16-278, B-3
plAddLine 14-64
plBaud 14-64
plBuffer 14-64
p l DCDHndShk 14-64
plDelLi n e 14-64
plDSRHndShk 14-64
p1DtSt pB its 14-64
plEcho 14-64
plLineLnt h 14-64
p l Parit y 14-64
plPr ntMo dern 14-64
plXn fH ndShk 14-64
port. See GrafPort
port driver 15-24, 15-43
p o r t NotOn 15-30, 15-31, 15-36,

15-39, 15-40, 15-42, 15-49,
B-5

portrait mode 15-6
port rectangle 16-14-15, 16-16,

16-139, 16-179, 16-208,
16-232, 16-243, 16-244,
25-17, 25-77, 25-82, 25-115

portRect field 16-14, 16-15
portSCB 16-13, 16-277
p o rtS i ze 16-274
posCtl 4-25, 4-86
PosMouse 14-33
PostEvent 7-14, 7-43-44
pPrPort 15-41, 15-48
PPToPort 16-197- 198
pr Abor t 15-20, 15-22, 15-34 , 15-

44, 15-47

1-18 Index

PrChoosePrinter 15-20, 15-22,
15-29

PrCloseDoc 15-20, 15-21, 15-30,
15-36, 15-40

PrClosePage 15-20, 15-21, 15-31,
15-38

PrDefault 15-19, 15-22, 15-46
PrDriverVer 15-33
PrError 15-22, 15-30, 15-34
prestyled fonts 8-5-6, 16-43
prlnfo 15-10, 15-11, 15-47
Print 15-1
printer driver 15-1, 15-23, 15-33
printer effects choice 15-6
printer error code 15-34, 15-44,

15-49
printer information subrecord

15-11
printer names dialog box 15-5
printer paper 15-5
printer status record 15-41
printer style subrecord 15-12-13
printing

color 15-15-18
draft 15-14- 15, 15-23, 15-37
spool 15-14-15, 15-23, 15-37,

15-40
printing loop 15-20, 15-34
Print Manager 1-4, 1-11, 15-1- 50

constants 15-47
data structures 15-47-48
error codes 15-49
shutdown routine 15-27
startup routine 15-26
status routine 15-28
using 15-19-22
version number routine 15-27

print record 15-9-15, 15-19,
15-32, 15-46

private memory 12-11, 12-14
private scrap 20-5-6
pr]ob 15-10, 15-47
PrJobDialog 15-20, 15-21, 15-22,

15-35, 15-46
ProDOS 5-4
ProDOS 16 xxviii, 5-7, 5-18, 5-19,

12-1, 12-14
proDOSVctr 14-68
PrOpenDoc 15-20, 15-21, 15-22,

15-36-37, 15-40

PrOpenPage 15-20, 15-21, 15-22,
15-38- 39

proportionally spaced font 16-226
proportional scroll bars 25-10
PrPicFile 15-20, 15-22, 15-30,

15-40- 41
PrPixelMap 15-42
PrPortVer 15-43
PrSetError 15-21, 15-22, 15-22,

15-44
prStl 15-10, 15-12, 15-47
PrSt!Dialog 15-20, 15-21, 15-22,

15-45, 15-46
PrValidate 15-19, 15-21, 15-22,

15-35, 15-45, 15-46
pseudorandom numbers 16-202
pseudo-type xxx
prVersion 15-10, 15-47
ps instDis k Err 14-56, 14-70, B-2
psPnMask 16-238, 16-278
psPnMode 16-238, 16-278
psPnPat 16-238, 16-278
psPnSiz e 16-238, 16-278
PtlnRect 16-200
PtlnRgn 16-201
ptrToDestloclnfo 16-191, 16-277
ptrToDestPoint 16-191, 16-277
PtrToHand 12-38
ptrToPixlmage 16°13, 16-277
ptrToSourceLoclnfo 16-191,

16-277
ptrToSourceRect 16-191, 16-277
Pt2Rect 16-199
p2AddLine 14-64
p2Baud 14-64
p2Buffe r 14-64
p2DCDHndShk 14-64
p2De1Line 14-64
p2DSRHndShk 14-64
p2DtStpBits 14-64
p2Echo 14-64
p2LineLnth 14-64
p2Parity 14-64
p2PrntModern 14-64
p2XnfHndShk 14-64
public scrap type 20-4
pull-down menu 1-3, 13-1
purgeable block 12-39, 12-40
PurgeAll 12-11, 12-39
purgeBit 8-9, 8-10, 8-50

purge block 12-8
purgeErr 12-39, 12-40, 12-47,

B-2
PurgeHandle 12-40
purge level 12-9, 12-15, 12-44,

12-45, 24-25
purple32 0 16-274
PutScrap 20-5, 20-6, 20-11, 20-16,

20-18

Q

QDAuxBootlnit 17-6
QDAuxReset 17-8
QDAuxShutDown 17-5, 17-7
QDAuxStartUp 17-5, 17-6
QDAuxStatus 17-8
QDAuxVersion 17-7
QDBootlnit 16-63
QDReset 16-67
QDShutDown 16-39, 16-66
QDStartUp 2-2, 16-39, 16-59,

16-61, 16-64-65, 16-275
QDStatus 16-67
QDVersion 16-66
qSecDisable 14-26, 14-67
qSecEnable 14-26, 14-67
qSecintHnd 14-68
quarter-second interrupt

handler 14-28-29
quartSecint 14-24, 14-66
queueDmgdErr 14-48, 14-52,

14-70, B-2
QuickDraw II 1-3, 1-11-14, 2-2,

16-1-278
constants 16-274-276
data structures 16-276-278
error codes 16-278
shutdown routine 16-66
startup routine 16-64-65
status routine 16-67
using 16-39-40
version number routine 16-66

QuickDraw II Auxiliary 1-4, 1-14,
2-4, 8-5, 8-14, 10-44, 13-83,
16-258, 17-1-16, C-6

shutdr .vn routine 17-7
staicup routine 17-6
status routine 17-8
using 17-5
version number routine 17-7

R
radio button 4-4, 4-10, 4-18

control record 4-18-20
radioBut ton 4-86
radioitem 6-10, 6-88
radioProc 4-13, 4-19, 4-73, 4-85
radNor 4-20, 4-88
radReserved 4-20, 4-88
radSel 4-20, 4-88
radTitle 4-20, 4-88
ramBased 23-46
RAM-based device driver 23-1,

23-4
RAM-based tool set 24-3
RAM tool set 1-1, 2-3
Random 16-202, 16-246
random number generator 16-246
range mode 11-12
rcADBAddr 3-29
rcLayoutOrLang 3-29
rcRepeatDelay 3-29
rdMaxRam 14-65
rdMinRam 14-65
ReadAbs 3-16
readADBError 3-17, 3-28
ReadASCIITime 14-4, 14-16
r eadAvailCharSet 3-17, 3-28
readAvailLayout 3-17, 3-28
ReadBParam 14-4, 14-13
ReadBRam 14-4, 14-10
ReadChar 23-7, 23-29, 23-30,

23-40
readConfig 3-17, 3-28
ReadConfigRec 3-29
ReadKeyMicroData 3-17
ReadKeyMicroMemory 3-18
ReadLine 23-30- 31
readMicroMem 3-28
readModes 3-17, 3-28
ReadMouse 14-34
read next 21-23, 21-33
readNext 21-23, 21-36
Read RAM 21-23, 21-31
readRAM 21-23, 21-36
ReadRamBlock 21-24
Read Register 21-23, 21-29
readRegister 21-23, 21-36
ReadTimeHex 14-4, 14-14
readVersionNum 3-17, 3-28

real font 8-7
reallocation of memory 12-43,

12-44
ReAllocHandle 12-15, 12-4 1
realOnlyBit 8-11, 8-50
recCtl 4-25, 4-39, 4-40
rec Size 4-25, 4-86
RECT XXX, 16-22
rectangle 16-22-23, 16-40, 16-86,

6-91, 16-97, 16-104, 16-162,
16-167, 16-176, 16-182,
16-184, 16-193, 16-203,
16-204, 16-208, 16-209,
16-247, 16-248, 16-271,
25-80, 25-89, 25-131

RectlnRgn 16-203
RectRgn 16-204
red32 0 16-275
red6 4 O 16-274
redMask 16-274
redraw routine 13-64-65
reduction 15-12, 15-13, 15-48
reentrant code 18-10, 19-1, 19-3
RefreshDesktop 25-91, 25-135
region 16-25, 16-40, 16-74, 16-75 ,

16-78, 16-79, 16-84, 16-87,
16-92, 16-98, 16-105, 16-163,
16-168, 16-171, 16-172,
16-177, 16-181, 16-185,
16-187, 16-194, 16-203,
16-204, 16-210, 16-218,
16-223, 16-248, 16-272,
16-273, 25-81, 25-132

register 2-7
RemoveDitem 6-24 , 6-76
repeat delay 7-3
repeat speed 7-3
reply record 22-24, 22-31, 22-32
reserved memory 12-3
resetADB 3-21, 3-28
ResetAlertStage 6-76
resetKbd 3-20, 3-28
ResetMember 11-21
resetSys 3-20, 3-28
resolution . See screen resolution
RestAII 5-21
RestoreBufDims 16-58, 16-61,

16-205
RestoreHandle 12-15, 12-42

Index 1-19

RestoreTextState 24-3, 24-16
RestScrn 5-21
resultlD 8-10, 8-51
resultStats 8-10, 8-51
Return key 4-14, 6-5, 6-11, 6-25,

6-37
rfFamNum 16-142, 16-278
rfFamStyle 16-142, 16-278
rfFBRExtent 16-142, 16-278
rfFontHandle 16-142, 16-278
rJNamePtr 16-142, 16-278
rJSize 16-142, 16-278
rgnAlreadyOpen 16-187, 16-278,

B-3
rgnFull 16-278, B-3
rgnNotOpen 16-74, 16-278, B-3
rgn ScanOve r fl ow 16-278, B-3
rgnSave 16-140, 16-249
Right Arrow 10-1, 10-29
rightFlag 4-22, 4-72, 4-85
right scroll bar 25-6
ringBuffOFlo 23-16, 23-47, B-4
ROM font 8-1, 8-19, 16-141
ROM font record 16-142, 16-278
ROM tool set 1-1, 2-3
rounded-corner rectan gle 16-23,

16-93, 16-99, 16-106, 16-169,
16-195

rounded result 9-3
routine number D-1- 9
rPage 15-11, 15-38, 15-48
rPaper 15-10, 15-11, 15-47
runAction 5-7, 5-8, 5-30

s
SANEBootinit 18-1 1
SANEDecStr816 18-2, 18-15
SANE direct page 18-6, 18-9
SANEElems816 18-2, 18- 15
SANEFP816 18-2, 18-15
SANEReset 18-14
SANEShutDown 18-3, 18-13
SANEStartUp 18-3, 18-12
SANEStatus 18-14

1-20 Index

SANE Tool Set xxviii, 1-4, 1-14,
18-1-15

shutdown routine 18-13
startup routine 18-12
status routine 18-14
using 18-3-6
version number routine 18-13

SANEVersion 18-13
sanFran 8-4, 8-51
SaveAll 5-22
SaveBufDims 16-58, 16-61,

16-206
SaveBufDims record 16-206
Save File dialog box 22-3, 22-4,

22-8, 22-27, 22-30
SaveScrn 5-22
SaveTextState 24-3, 24-16,

24-17-18
SaveTextState record 24-18
scADBAddr 3-29
sCalcRgns 25-25
ScalePt 16-207
ScaleRec 3-29
scale record 3-23, 3-24, 3-29
scaling 8-7, 8-23, 8-44
scan line control byte (SCB) 2-2,

16-13, 16-34, 16-127, 16-143,
16-145, 16-211, 16-213,
16-228, 16-23 1, 16-250,
16-275

scanLinelnt 14-24 , 14-66
scan line interrupt 16-230
SCB. See scan line control byte
scbColorMode 16-275
scbFill 16-275
scblnterrupt 16-275
s cbRe served 16-275
scclntFlag 14-66
s cc IntHnd 14-67
SchAddTask 19-3, 19-7
SchBootinit 19-4
Scheduler 1-4, 1-14, 5-3, 19-1-8

shutdown routine 19-5
startup routine 19-4
status routine 19-6
using 19-2-3
version number routine 19-5

Scheduler queue 19-3 , 19-7

SchFlush 19-3, 19-8
SchReset 19-6
SchShutDown 19-2, 19-5
SchStartUp 19-2, 19-4
SchStatus 19-6
SchVersion 19-5
scLayoutOrLang 3-29
scLnDisable 14-26, 14-67
scLnEnable 14-26, 14-67
scLnlntHnd 14-67
scrap. See also desk scrap

LineEdit 20-5
private 20-5-6

ScrapBootinit 20-7
scrap count 20-5, 20-11
Scrap Manager 1-3 , 1-15, 10-45,

20-1-19
constants 20-19
error codes 20-19
shutdown routine 20-8
startup routine 20-7
status routine 20-9
using 20-4-5
version number routine 20-8

ScrapReset 20-9
ScrapShutDown 20-4, 20-8
ScrapStartUp 20-4, 20-7
ScrapStatus 20-9
ScrapVersion 20-8
screen hole 5-4, 5-21, 5-22
screen memory 16-7 1
screenReserved 16-64, 16-278,

B-3
screen resolution 13-63, 15-15,

25-135
screenTable 16-107
scRepeatDelay 3-29
scroll bar. See also dialog scroll bar

4-5-7, 4-10, 4-20, 25-9-10,
25-62, 25-87, 25-88, 25-95,
25-105, 25-106

bottom 25-6
control record 4-20-22
right 25-6

scrol1Barltem 6-10, 6-12, 6-88
scrollLineDown 6-15, 6-88
scrollLineUp 6-15, 6-88
scrollPageDown 6-15, 6-88
scrollPageUp 6-15 , 6-88

scrollProc 4-13, 4-21, 4-73,
4-85

ScrollRect 16-39, 16-208
s c rollThumb 6-15, 6-88
SDivide 9-38
SectRect 16-209
SectRgn 16-210
s e gLoaderlErr 14-55, 14-70, B-1
segLoader2Err 14-56, 14-70, B-2
selection mode 11-12
selection range 6-78, 10-4,

10-7-8, 10-9, 10-11
Select!Text 6-77-78
SelectMember 11-22
selectOn l yOne 11-25
SelectWindow 25-11, 25-36, 25-79,

25-92, 25-124, 25-126
Se l!Text 6-24
SendBehind 25-93
Sendlnfo 3-4, 3-5, 3-6, 3-19- 22,

7-24, 7-25
Serial Communications Controller

(SCC) interrupt flag 14-21
ServeMouse 14-34, 14-35
SetAbsClamp 7-27, 14-5, 14-37
SetAbsScale 3-15, 3-23
SetAIISCBs 16-211
SetArcRot 16-212
SetBackColor 16-55 , 16-213
SetBackPat 16-214
SetBarColors 13-41, 13-67 ,

13-69-70
SetBufD ims 16-58-59,

16-215-216
SetCharExtra 16-51 , 16-55, 16-217
SetClip 6-7, 16-40, 16-218
SetClipHandle 16-219
SetColorEntry 16-220
SetColorTable 16-221
setConfi g 3-20, 3-28
SetConfigRec 3-29
SetContentD raw 25-94
SetContentOrigin 25-95
SetContentOrigin2 25-96
SetCt!Action 4-74, 11-11
SetCtl!cons 4-11, 4-75
SetCt!Params 4-6, 4-76, 11-11
SetCtlRefCon 4-77
SetCt!Title 4-78, 11-11

' SetCt!Value 4-10, 4-79, 4-84,
11-11

SetCursor 16-222
SetDAFont 6-24, 6-79
SetDAStrPtr 5-23-25
SetDataSize 25-97
SetDefButton 6-80
SetDefFroc 25-98
SetDeskP a t 25-41, 25-139
SetDesktop 25-41, 25-139
SetD!temBox 6-81
SetD!temType 6-82
SetD!temValue 6-12, 6-83
SetEmptyRgn 16-223
SetErrGlobals 23-5, 23-32
SetErrorDevice 23-6, 23-33
SetEventMask 7-45
SetFont 8-16, 16-224
SetFontFlags 16-56, 16-225-226
SetFont!D 8-16, 16-227
SetForeColor 16-55, 16-228
SetFrameColor 25-20, 25-99-100
SetGrafFrocs 16-229
SetHandleSize 12-43
SetHeartBeat 7-23, 14-48-51
SetlnfoDraw 25-101
SetlnfoRefCon 25-102
SetlnGlobals 23-5, 23-34
Setlnpu tDevice 23-5, 23-35-36
SetlntUse 16-230
Set!Text 6-23, 6-84
SetMasterSCB 16-231
SetMaxGrow 25-103
SetMenuBar 13-71
SetMenuFlag 13-72
SetMenu!D 13-16, 13-73
SetMenuTitle 13-13, 13-74
SetM!tem 13-13, 13-75
SetM!temBlink 13-13, 13-76
SetM!temFlag 13-15, 13-77-78
SetM!tem!D 13-16, 13-79
SetM!temMark 13-6, 13-80
SetM!temN ame 13-81
SetM!temStyle 13-6
set Mod es 3-20, 3-28
SetMouse 14-34, 14-36
SetMTitleStart 13-82
SetMTitleWidth 13-83

SetOrigin 10-11, 15-22, 16-39,
16-232, 25-21 , 25-31, 25-116

SetOriginMask 25-104
SetOutGlobals 23-5, 23-37
SetOutputDevice 23-6, 23-38
SetPage 25 -105
s etparams 4-25, 4-38, 4-86
SetPenMask 16-233
SetPenMode 16-40, 16-234-235,

16-259
SetPenPat 16-40, 16-236
SetPenSize 16-40, 16-237
SetPenState 16-238
SetPicSave 16-239
SetPolySave 16-240
SetPort 16-39, 16-241, 25-116
SetPortLoc 16-242
SetPortRect 16-243
SetPortSize 16-244
SetPt 16-245
SetPurge 12-15, 12-44
SetPurgeAII 12-15, 12-45
SetPurgeStat 8-15 , 8-49
SetRandSeed 16-202, 16-246
SetRect 16-247
SetRectRgn 16-248
SetRgnSave 16-249
SetScrapPath 20-17
SetScroll 25-106
SetSolidBackPat 16-251
SetSolidPenPat 16-252
SetSoundMIRQV 21-25
SetSoundVolume 21-26
SetSpaceExtra 16-51, 16-55,

16-253
SetStdProcs 16-254
SetSwitch 7-46
SetSysBar 13-8, 13-86
SetSysField 16-255
SetSysFont 8-19, 8-39, 16-256
SetSysWindow 25-107
SetTextFace 16-56, 16-257-258
SetTextMode 16-55, 16-259-260
SetTextSize 16-261
SetTSPtr 24-3, 24-19, A-6
SetUserField 16-262
SetUserSound!RQV 21-27
SetVector 7-23, 14-5, 14-26,

14-53, 14-61-62, 14-63
SetVisHand le 16-263

Index 1-21

SetVisRgn 16-264
SetWAP 24-3, 24-20, A-7, A-8
SetWFrame 25-108
SetWindowlcons 25-15, 25-109
SetWRefCon 25-28, 25-110
SetWTitle 25-111
SetZoomRect 25-112
SFAIICaps 22-20
SFBootin it 22-15
SFGetFile 22-14, 22-21-24
SFPGetFil e 22-14, 22-25-26
SFPPutFile 22-14, 22-27-29
SFPutFile 22-14, 22-30-31
SFReset 22-18
SFShutDown 22-13, 22-17, 22-19
SFStartUp 22-13, 22-16, 22-19
SFStatus 22-19
SFVersion 22-18
shadowMask 16-276
shadow type style 16-258, 17-1,

17-3
shaston, 8-4, 8-51
shftCpsLCas 14-65
Shift-Apple-Left Arrow 10-2 , 10-29
Shift-Apple-Right Arrow 10-2,

10-29
s hiftKey 7-9, 7-10, 7-51
Shift-Left Arrow 10-1, 10-29
Shift-Option-Left Arrow 10-1, 10-2,

10-29
Sh ift-Option-Right Arrow 10-1,

10-2, 10-29
Shift-Right Arrow 10-1, 10-29
ShowContro l 4-10, 4-56, 4-80,

11-11
ShowCursor 16-264
ShowDitem 6-24, 6-62, 6-81, 6-85
ShowHide 25-113
ShowPen 16-265, 17-9, 17-14
ShowWindow 25-99, 25-113,

25-114
shutdown routines

Apple Desktop Bus Tool Set
3-11

Control Manager 4-43
Desk Manager 5-10
Dialog Manager 6-29
Event Manager 7-29
Font Manager 8-21
Integer Math Tool Set 9-6

1-22 Index

LineEdit Tool Set 10-14
List Manager 11-14
Memory Manager 12-18
Menu Manager 13-31
Miscellaneous Tool Set 14-7
Print Manager 15-27
QuickDraw II 16-66
QuickDraw II Auxiliary 17-7
SANE Tool Set 18-13
Scheduler 19-5
Scrap Manager 20-8
Sound Tool Set 21-9
Standard File Operations Tool

Set 22-17
Text Tool Set 23-11
Tool Locator 24-5
Window Manager 25-33

shutting down a tool set 2-4
signature word 14-50
signedFlag 9-42
simpBRound 4-85
simpDropSquare 4~5
simple button 4-14

control record 4-14- 16
simpleButton 4-86
simpleProc 4-13, 4-15, 4-73,

4-85
simpRound 4-85
simpSquare 4-85
sine 9-23
single mode 11-12
size 16-43
size box 4-4, 4-23, 4-65, 25-6,

25-10, 25-49, 25-75
control record 4-23-24

SizeWindow 25-77, 25-115,
25-125, 25-138

slopRect 4-33-34, 4-88
slop rectangle 4-50, 25-46
sltlintExt 14-65
slt2intExt 14-65
slt3intExt 14-65
slt4intExt 14-65
sltSintExt 14-65
slt6intExt 14-65
slt 7 int Ext 14-65
smoothing 15-7, 15-13
sndAlreadyStrtErr 21-8, 21-37,

B-3

sndintHnd 14-68
SolidPattern 16-265
SortList 11-8, 11-11
SoundBootinit 21-7
sound general logic unit 21-4
sound hardware 21-1, 21-3-5
sound interrupt handler 21-25
sound procedure 6-22, 6-47
SoundReset 21-10
SoundShutDown 21-6, 21-9
SoundStartUp 21-6, 21-8
sound subsystems 21-3
Sound Tool Set 1-4, 1-15, 21-1-37

constants 21-36--37
data structures 21-37
error codes 21-37
shutdown routine 21-9
startup routine 21-8
status routine 21-10
using 21-6
version number routine 21-9

SoundToolStatus 21-10
SoundVersion 21-9
sPackageOErr 14-55, 14-70, B-1
special character, menu 13-14-15
special memory 12-3, 12-12,

12-13
specification

connector xxvi
language xxvii
mechanical xxvi

spExtra 16-30, 16-5 1, 16-55,
16-58, 16-59, 16-60, 16-144,
16-253

spool printing 15-14-15, 15-20,
15-23, 15-30, 15-37, 15-38,
15-40

square root 9-24
SRQ list 3-3, 3-5, 3-7, 3-9, 3-15,

3-25, 3-26, 7-24
srqListFull 3-25, 3-29, B-4
SRQPoll 3-25
SRQRemove 3-26, 7-25
stack 2-5, 5-4
stack diagram xxix

pseudo-type xxx
stage byte 6-21, 6-33

Standard Apple Numeric
Environment. See SANE

standard color palette
320 mode 16-35
640 mode 16-36

standard color table 16-159
standard control type value 4-73
Standard File Operations Tool

Set 1-4, 1-15, 22-1-32
constants 22-32
data structures 22-32
shutdown routine 22-17
startup routine 22-16
status routine 21-19
using 22-13- 14
version number routine 21-18

standard filter procedure 6-25
standard GrafPort 16-187
standardMenu 13-72, 13-87
standard menu edit 5-27
standard pen state 16-196
standard SCB 16-145
standard window control 25-6-7
StartDrawing 10-11 , 25-31, 25-116
StartinfoDrawing 25-47, 25-117
starting up a tool set 2-4
startUpAlreadyMade 15-49, B-5
startup order, tool set C-6
startup routines

Apple Desktop Bus Tool Set
3-10

Control Manager 4-42
Desk Manager 5-9
Dialog Manager 6-28
Event Manager 7-27-28
Font Manager 8-19-20
Integer Math Tool Set 9-5
LineEdit Tool Set 10-13
List Manager 11-13
Memory Manager 12-17
Menu Manager 13-30
Miscellaneous Tool Set 14-6
Print Manager 15-26
QuickDraw II 16-64-65
QuickDraw II Auxiliary 17-6
SANE Tool Set 18-12
Scheduler 19-4
Scrap Manager 20-7
Sound Tool Set 21-8

Standard File Operations Tool
Set 22-16

Text Tool Set 23-11
Tool Locator 24-4
Window Manager 25-32

startupSlt 14-65
statText 6-10, 6-12, 6-17, 6-24,

6-88
state record 24-18
StatusID 14-60
status record, printer 15-41
status routines

Apple Desktop Bus Tool Set
3-12

Control Manager 4-44
Desk Manager 5-11
Dialog Manager 6-30
Event Manager 7-30
Font Manager 8-22
Integer Math Tool Set 9-7
LineEdit Tool Set 10-15
List Manager 11-15
Memory Manager 12-20
Menu Manager 13-32
Miscellaneous Tool Set 14-8
Print Manager 15-28
QuickDraw II 16-67
QuickDraw II Auxiliary 17-8
SANE Tool Set 18-14
Scheduler 19-6
Scrap Manager 20-9
Sound Tool Set 21-10
Standard File Operations Tool

Set 21-19
Text Tool Set 23-14
Tool Locator 24-6
Window Manager 25-34

StatusTextDev 23-39
stepVector 14-68
Stil!Down 7-47
stkOvrFlwErr 14-55, 14-70, B-2
Stop alert 6-6
StopAlert 6-24, 6-86
stop icon 6-86
StopSound 21-10
stop-sound mask 21-18-19
StringBounds 16-29, 16-56, 16-58,

16-266
string bounds rectangle 16-266

StringWidth 16-29, 16-56, 16-58,
16-267

structure region 25-9, 25-65,
25-83

stupVolMntErr 14-56, 14-70, B-2
style 16-43
style dialog box 15-1, 15-5-7,

15-45
style subrecord 15-12- 13
SubPt 16-268
Super Hi-Res graphics mode

16-31, 16-155
swap mode 21-5
swap pair 21-5
switch event 7-4 , 7-5, 7-14, 7-46
switchEvt 7-7, 7-50
switchMask 7-11, 7-50
symbol 8-4, 8-51
synch 3-20, 3-28
synchLayoutOrLang 3-29
synchMode 3-29
SynchRec 3-29
synchRepeatDelay 3-29
synthesizer interrupt handler 21-27
synthModeErr 21-15, 21-37, B-3
SysBeep 14-5, 14-53
SysFailMgr 14-5, 14-54-56, 23-8
sysFailMgr 14-67, 23-8
sysFie/d 16-146, 16-255 , 16-277
sysSpeed 14-65
sysStrtMtErr B-2
SystemClick 5-6, 5-26, 25-123
system configuration 14-11
SYSTEM directory 2-3, 5-3, 5-6,

8-1, 8-15, 15-23, 15-24
system direct page 5-4
SystemEdit 5-6, 5-27, 25-123
SystemEvent 5-28, 7-40
system event mask 7-10, 7-45
System Failure Manager 14-54
system failure message 14-5,

14-54
system font 6-79, 8-8, 8-39, 8-40,

8-48, 13-78, 16-147, 16-256
System Loader 12-1, 12-14,

12-44, 12-45
system menu bar 13-4-5, 13-30,

13-55, 13-63, 13-66, 13-68,
13-7 1, 13-86

Index 1-23

system speaker 14-5
SystemTask 5-6, 5-8, 5-29,

25- 119
system tool A-1
system volume 21-26
system window 5-26, 25-8, 25-66,

25-70, 25-107
sysTool 24-26

T
Tab key 6-11
t able32 0 16-274
table640 16-274
taliesin 8-4, 8-51
talk 3-28
taskinstlErr 14-48, 14-70, B-2
task mask 25-13-14, 25-118
taskMask bit fl ag 25-14
taskMaskErr 25-118, 25-144, B-4
TaskMaster 4-10, 5-5, 5-20, 5-26,

5-29, 6-63, 7-12, 10-11 , 13-5,
13-7, 13-9, 13-10, 13-11,
13-60, 13-66, 25-11,
25-12-15, 25-21, 25-3 1,
25-44, 25-64, 25-92,
25-118-126

taskNtFdErr 14-52, 14-70, B-2
task record 13-10, 25-12-13,

25-118, 25-143
tBarColor 25-19, 25-142
termination character 13-13
TestControl 4-81
testCtl 4-25 , 4-27, 4-86
test file format xxvii
text block 16-26
TextBootinit 23-10
TextBounds 16-29, 16-58, 16-269
text buffer 16-54, 16-58, 16-100,

16-157, 16-215-2 16
textBufferWords 16-61, 16-206,

16-276
textBufHeight 16-61, 16-206,

16-276
text d evice 23-4, 23-15, 23-28,

23-39
error output 23-17, 23-18,

23-19, 23-20, 23-2 1
input 23-29, 23-30, 23-40
output 23-41, 23-42, 23-43,

23-44, 23-45

1-24 Index

text editing 6-11
text face 16-148, 16-257
text face flag 16-258
text fil e format xxvii
text mode 16-30, 16-149,

16-259-260, 16-275
TextReadBlock 23-40
TextReset 23-13
t extScrap 20-4, 20-19
text screen 24-16, 24-17, 24-23
TextShutDown 23-9, 23-11
TextStartUp 23-5, 23-9, 23-11
TextStatus 23-14
text style 16-276

me nu item 13-52
Text Tool Set 1-4, 1-16, 23-1-47

constants 23-46
error codes 23-47
shutdown routine 23-11
startup routine 23-11
status routine 23-14
us ing 23-9
version number routine 23-12

TextVersion 23-12
TextWidth 16-29, 16-58, 16-270
TextWriteBlock 23-41
thumb 4-8, 25-9
thumb box 4-5
thumbCtl 4-25, 4-32-34 , 4-86
tickCnt 14-66
TickCount 7-14, 7-48
tick counter 14-22
time

ASCII 14-16
hexadecimal 14-14 , 14-15

times 8-4 , 8-5 1
title , window 25-73, 25-111,

25-115
title bar 25-6, 25-8, 25-49
title character 13-13
titleColor 25-18, 25-142
titleNam e 13-19, 13-20, 13-21,

13-88
titleParm 6-90
titleWidth 13-19, 13-20, 13-21,

13-88
TLBootinit 24-4
TLMountVolume 24-3, 24-2 1-22
TLReset 24-6

TLShutDown 24-3, 24-5
TLStartUp 2-1, 24-3, 24-4
TLStatus 24-6
TLTextMountVolume 24-3,

24-23-24
Tl Version 24-5
tmClo se 25-14, 25-125, 25-140
tmContent 25-14, 25-124, 25-140
tmCRedraw 25-14, 25-120, 25-140
tmDragW 25-14, 25-124, 25-140
tmFindW 25-14, 25-121, 25-140
tmGrow 25-14, 25-125, 25-140
tm!nactive 13-60, 25-14,

25-121 , 25-140
tminfo 25-14, 25-126, 25-140
tmMenuKey 25-14, 25-119, 25-140
tmMenuSel 25-14, 25-121, 25-140
tmOpenNDA 25-14, 25-122, 25-140
tmScroll 25-14, 25-126, 25-140
tmSpecial 25-14, 25-122, 25-140
tmSysClick 25-14, 25-123,

25-140
tmUpdate 25-14, 25-119, 25-140
tmZoom 25-14, 25-125, 25-140
t oBot tom 25-139
ToDesk 25-40, 25-139
toolErr 2-6
toolLocl 14-67
too1Loc2 14-67
Tool Locator 1-2 , 1-3, 1-16, 2-1,

2-3, 24-1-26, A-2
constants 24-26
error codes 24-26
shutdown routine 24-5
startup routine 24-4
status routine 24-6
us ing 24-3
version number routine 24-5

toolNotFoundErr 24~, 24~,
24-9, 24-10, 24-11, 24-19,
24-20, 24-25, 24-26, B-2

tool pointer table (TPT) 24-19, A-2
tool set 1-1-19

error codes 2-5, B-1-5
installing A-6-9
loading 2-3-4
minimum version numbe r

24-10, 24-11
RAM-based 24-3
shutting down 2-4

starting up 2-4
version information A-3
version number A-8

tool set dependency C-15
tool set numbers 2-3, 24-13, A-3,

D-1-9
tool set startup order 2-4, C-6
TOOLS subdirectory 2-3, 24-3,

24-10, 24-11
tool table 2-3, 24-11, 24-12
t oolVersionE r r 24-10, 24-11,

24-26, B-2
topMost 25-139
toronto 8-4, 8-51
TotalMem 12-46
TPT (tool pointer table) 24-19, A-2
traceVector 14-68
trackball 7-21
TrackControl 4-10, 4-82-84,

25-126
TrackGoAway 25-11, 25-125,

25-127-128
TrackZoom 25-11, 25-12, 25-125,

25 -129-130
transmitADBBytes 3-21, 3-28
t ransmit2ADBBytes 3-21, 3-28
transparent 14-36, 14-67
transparentV I 14-36, 14-67
txFace 16-56
txSize 16-150, 16-261, 16-277
txt DspLang 14-65

u
UDivide 9-39
unclaimedSnd i ntErr 21-37
unCnctdDevErr 14-34, 14-70, B-2
unDefHW 23-15, 23-47, B-4
underlined menu item 13-15-16,

13-77
unde rlineMas k 16~76
unde rMit e m 13-78, 13-87
underscore character 2-5
undo 5-30
und oAct ion 5-7, 5-30
UnionRect 16-271
UnionRgn 16-272
UnloadOneTool 22-13, 22-16,

22-17, 24-3, 24-25
UnloadScrap 20-17

unlocking a memory block 12-32,
12-33

UnPackBytes 14-5, 14-42- 44
unr eal Bit 8-9, 8-10, 8-50
unreal font 8-7, 8-8
uns igne dFlag 9-42
unzoomed window size 25-74,

25-112
upArrow 4-86
UpdateDialog 6-87
update event 4-9, 4-54, 7-4, 7-5,

7-14, 10-46, 25-11, 25-20,
25-51, 25-52 , 25-94, 25-95,
25-96

updateEvt 7-7, 7-50, 25-119
updateMask 7-11, 7-50
update region 6-87, 10-39, 25-35,

25-67, 25-80, 25-81, 25-131,
25 -132

upFlag 4-22, 4-72, 4-85
u s erCtlitem 6-10, 6-12, 6-88
userCt1Item2 6-10, 6-12, 6-88
userField 16-151, 16-262, 16-277
user ID 2-1, 2-2, 5-4, 12-10,

12-14, 12-15, 12-17, 12-18,
12-35, 14-57, 14-59, 14-60

master 12-10- 11, 12-14, 12-15,
12-23, 12-35

User ID Manager 12-10, 12-14,
12-17, 14-6, 14-57

useritem 6-10, 6-11, 6-12, 6-88
user tool A-1, A-6
u serTool 24-26
user tool set A-6
userVolume 14-65
usrTLoc l 14-67
usrTLoc2 14-67

V
ValidRect 25-131
ValidRgn 6-87, 25-132
varCode parameters 25-25
vAxisOn ly 4-53, 4-86
vbint 14-24, 14-66
vblDisable 14-26, 14-67
vblEnable 14-26, 14-67
VBL interrupt 14-27, 14-49
vblintHnd 14-68
vector address 14-5, 14-61, 14-63

vector reference number 14-62
ven i ce 8-4, 8-51
version 16-42, 16-43
version information A-3
version number A-8

font definition 16-42, 16-43
minimum 24-10, 24-11

version number routines
Apple Desktop Bus Tool Set

3-11
Control Manager 4-43
Desk Manager 5-10
Dialog Manager 6-29
Event Manager 7-29
Font Manager 8-21
Integer Math Tool Set 9-6
LineEdit Tool Set 10-14
List Manager 11-14
Memory Manager 12-19
Menu Manager 13-31
Miscellaneous Tool Set 14-7
Print Manager 15-27
QuickDraw II 16-66
QuickDraw II Auxiliary 17-7
SANE Tool Set 18-13
Scheduler 19-5
Scrap Manager 20-8
Sound Tool Set 21-9
Standard File Operations Tool

Set 22-18
Text Tool Set 23-12
Tool Locator 24-5
Window Manager 25-33

view rectangle 6-17, 10-4, 10-6-7,
10-11, 10-17, 10-30

visible region 16-14-15, 16-17,
16-152, 16-153, 16-187,
16-197, 16-208, 16-264,
17-10, 25-35, 25-47

visRgn 16-15, 16-152, 16-263,
25-23, 25-28

volSetting 21-17, 21-37
volume setting 21-21, 21-26
vSizing 15-12, 15-13, 15-48

w
WaitCursor 17-5, 17-16
WaitMouseUp 7-14, 7-49

Index 1-25

WAPT (work area pointer table)
A-4, A-10

waveSize 21-17, 21-37
waveStart 21-17, 21-37
wC a lcRgns -25-25, 25-140
wCalledS y sEdit 25-123, 25-140
wClickCalled 25-123, 25-140
wClosedNDA 25-122, 25-140
wColor 25-84, 25-87, 25-142
wContDefProc 25-21, 25-26,

25-84, 25-88, 25-119, 25-143
wContRgn 25-16, 25-142
wControls 25-16, 25-142
wDataH 25-84, 25-87, 25-142
wDataV 25-84, 25-87, 25-142
wDev 15-12, 15-13, 15-48
wDispose 25-25, 25-140
wDraw 25-25, 25-140
wDrawF rame 25-27
wedge 16-24
wFrameBits 25-21 , 25-69, 25-84,

25-85, 25-108, 25-142
wFrameCtrls 25-16, 25-142
wFrameDefProc 25-25, 25-84,

25-88, 25-143
wGrow 25-25
what 7-6, 7-7, 7-43 , 7-51
wHAxisOnly 25-139
when 7-6, 7-14, 7-43, 7-51 , 13-61,

13-66
where 7-6, 7-38, 7-43, 7-51
wHit 25-25, 25-140
white 16-275
wHitFrame 25-126
widMax 16-56, 16-62, 16-226
widMaxSize 16-226, 16-274
width 16-13, 16-277
winactMenu 13-60, 25-49,

25-121 , 25-140
winConte n t 25-11, 25-12, 25-28,

25-49, 25-124, 25-140
WindBootinit 25-32
WindDragRect 25-133-134
winDesk 25-49, 25-140
wi n Deskitem 25-49, 25-122,

25-140
WindNewRes 25-135

1-26 Index

window 25-1
alert 6-7 , 25-6, 25-17
application 25-8, 25-66, 25-70
control 4-8
dialog 6-7
document 25-6, 25-17
system 5-26, 25-8, 25-66,

25-70, 25-107
window colors 25-17-20
window color table 25-142
window controls 25-6-7
window definition procedure 25-20,

25-25, 25-55, 25-58, 25-98,
25-101, 25-127

window frame 25- 17, 25-20,
25-108, 25-115

window frame color 25-18, 25-57,
25-99

window frame scroll bars 25-62,
25-64, 25 -96 , 25-105, 25-106

window frame type 25-69,
25-84- 85, 25-108

WindowGlobal 25-136-137
window global fl ag 25-136-137
window global mask 25-137
window information bar 25-20
Window Manager 1-3, 1-17- 19,

13-7, 13-64, 13-66, 25-1- 144
constants 25-139- 141
data structures 25-142-143
error codes 25-144
icon font 25-15, 25-109
shutdown routine 25-33
startup routine 25-32
status routine 25-34
using 25-10-11
version number routine 25-33

window menu bar 13-5
window origin 25-29
window record 25-15- 16, 25-88,

25-142
window size box 25-19
window title 25-73, 25-111, 25-115
window title bar color 25-19
window title colo r 25-18
winDrag 25-11, 25-28, 25-49,

25-124, 25-140
WindReset 25-34

WindShutDown 25-11, 25-33
windSize 25-141
WindStartUp 25-11, 25-32
WindStatus 25-34
WindVersion 25-33
w!nfoDefProc 25-84, 25-88,

25-143
w!nfoHeight 25-21, 25-84, 25-88,

25-143
w!nfoRe/Con 25-59, 25-84, 25-88,

25-143
winFrame 25-28, 25-49, 25-126,

25-140
winGoAwa y 25-11, 25-27, 25-28,

25-49, 25-125, 25-140
winGrow 25-11, 25-28, 25-49,

25-125, 25-140
wininfo 25-28, 25-49, 25-126,

25-140
winMen uBa r 13-10, 25-11, 25-49,

25-121, 25-123, 25-140
winSpecial 25-49, 25-122,

25-123, 25-140
winSysWindow 25-49, 25-140
winZoom 25-11, 25-27, 25-28,

25-49, 25-125, 25-140
wMaxH 25-84, 25-87, 25-142
wMaxV 25-84, 25-87, 25-142
wmNotStartedUp 4-42, 4-48,

4-88, B-4
wmTaskMa skErr 25-119
wmTaskRecSize 25-141
wNew 25-25, 25-140
wNext 25-16, 25-142
wNoCon s traint 25-139
wN oH it 25-28, 25-49
work area pointer table (WAP1)

A-4, A-10
wPadding 25-16, 25-142
wPageHor 25-84, 25-88, 25-143
wPageVar 25-84, 25-88, 25-143
wPlane 25-84, 25-88, 25-143
wPosition 25-84, 25-88, 25-143
wRefCon 25-38, 25-72, 25-84,

25-87, 25-110, 25-142
WriteBParam 14-4, 14-11-12,

14-13

WriteBRam 14-4, 14-9
WriteChar 23-42
WriteCString 23-7, 23-43
WriteLine 23-44
writeMicroMem 3-20, 3-28
write next 21-23, 21-34
wr i teNext 21-23, 21-36
writeProtected 23-16, 23-47,

B-4
Write RAM 21-23, 21-32
writeRAM 21-23, 21-36
WriteRamBlock 21-28
Write Register 21-23, 21-30
wr i teReg ister 21-23, 21-36
WriteString 23-45
WriteTimeHex 14-4, 14-15
wScrollHor 25-84, 25-87, 25-143
wScrollVer 25-84, 25-87, 25-143
wStorage 25-84, 25-88, 25-143
wStructRgn 25-16, 25-142
wTitle 25-84, 25-85, 25-142
wTrackZoom 25-125
wUpdateRgn 25-16, 25-142
wVAxisOnly 25-139
wXOrigin 25-84, 25-87, 25-142
wYOrigin 25-84, 25-87, 25-142
wZoom 25-84, 25-87

X
xDivide 3-24, 3-29
xMultiply 3-24, 3-29
xOffset 3-24, 3-29
xorMitemHilite 13-78, 13-87
XorRgn 16-273
xorTitleHilite 1~72
X2Fix 9-40
X2Frac 9-41

y
yDivide 3-24, 3-29
yellow 16-275
yMultiply 3-24, 3-29
yOffset 3-24, 3-29

z
ZeroScrap 20-5, 20-6, 20-11,

20-16, 20-18
zeroSize 16-226, 16-274
zoom box 25-6, 25-10, 25-49
zoomed window size 25-74,

25-112
zoom region 25-9, 25-11, 25-49,

25-129-130
ZoomWindow 25-11, 25-12,

25-138

Index 1-27

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh® computers
and Microsoft® Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT®, the LaserWriter
page-description language, was
developed by Adobe Systems
Incorporated. Some of the
illustrations were created using
Adobe Illustrator™.

Text type is ITC Garamond®
(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic®.
Bullets are ITC Zapf Dingbats®.
Program listings are set in Apple
Courier, a monospaced font.

	Project_001
	Project_001a
	Project_002
	Project_002a
	Project_003
	Project_003a
	Project_004
	Project_004a
	Project_005
	Project_005a
	Project_006
	Project_006a
	Project_007
	Project_007a
	Project_008
	Project_008a
	Project_009
	Project_009a
	Project_010
	Project_010a
	Project_011
	Project_011a
	Project_012
	Project_012a
	Project_013
	Project_013a
	Project_014
	Project_014a
	Project_015
	Project_015a
	Project_016
	Project_016a
	Project_017
	Project_017a
	Project_018
	Project_018a
	Project_019
	Project_019a
	Project_020
	Project_020a
	Project_021
	Project_021a
	Project_022
	Project_022a
	Project_023
	Project_023a
	Project_024
	Project_024a
	Project_025
	Project_025a
	Project_026
	Project_026a
	Project_027
	Project_027a
	Project_028
	Project_028a
	Project_029
	Project_029a
	Project_030
	Project_030a
	Project_031
	Project_031a
	Project_032
	Project_032a
	Project_033
	Project_033a
	Project_034
	Project_034a
	Project_035
	Project_035a
	Project_036
	Project_036a
	Project_037
	Project_037a
	Project_038
	Project_038a
	Project_039
	Project_039a
	Project_040
	Project_040a
	Project_041
	Project_041a
	Project_042
	Project_042a
	Project_043
	Project_043a
	Project_044
	Project_044a
	Project_045
	Project_045a
	Project_046
	Project_046a
	Project_047
	Project_047a
	Project_048
	Project_048a
	Project_049
	Project_049a
	Project_050
	Project_050a
	Project_051
	Project_051a
	Project_052
	Project_052a
	Project_053
	Project_053a
	Project_054
	Project_054a
	Project_055
	Project_055a
	Project_056
	Project_056a
	Project_057
	Project_057a
	Project_058
	Project_058a
	Project_059
	Project_059a
	Project_060
	Project_060a
	Project_061
	Project_061a
	Project_062
	Project_062a
	Project_063
	Project_063a
	Project_064
	Project_064a
	Project_065
	Project_065a
	Project_066
	Project_066a
	Project_067
	Project_067a
	Project_068
	Project_068a
	Project_069
	Project_069a
	Project_070
	Project_070a
	Project_071
	Project_071a
	Project_072
	Project_072a
	Project_073
	Project_073a
	Project_074
	Project_074a
	Project_075
	Project_075a
	Project_076
	Project_076a
	Project_077
	Project_077a
	Project_078
	Project_078a
	Project_079
	Project_079a
	Project_080
	Project_080a
	Project_081
	Project_081a
	Project_082
	Project_082a
	Project_083
	Project_083a
	Project_084
	Project_084a
	Project_085
	Project_085a
	Project_086
	Project_086a
	Project_087
	Project_087a
	Project_088
	Project_088a
	Project_089
	Project_089a
	Project_090
	Project_090a
	Project_091
	Project_091a
	Project_092
	Project_092a
	Project_093
	Project_093a
	Project_094
	Project_094a
	Project_095
	Project_095a
	Project_096
	Project_096a
	Project_097
	Project_097a
	Project_098
	Project_098a
	Project_099
	Project_099a
	Project_100
	Project_100a
	Project_101
	Project_101a
	Project_102
	Project_102a
	Project_103
	Project_103a
	Project_104
	Project_104a
	Project_105
	Project_105a
	Project_106
	Project_106a
	Project_107
	Project_107a
	Project_108
	Project_108a
	Project_109
	Project_109a
	Project_110
	Project_110a
	Project_111
	Project_111a
	Project_112
	Project_112a
	Project_113
	Project_113a
	Project_114
	Project_114a
	Project_115
	Project_115a
	Project_116
	Project_116a
	Project_117
	Project_117a
	Project_118
	Project_118a
	Project_119
	Project_119a
	Project_120
	Project_120a
	Project_121
	Project_121a
	Project_122
	Project_122a
	Project_123
	Project_123a
	Project_124
	Project_124a
	Project_125
	Project_125a
	Project_126
	Project_126a
	Project_127
	Project_127a
	Project_128
	Project_128a
	Project_129
	Project_129a
	Project_130
	Project_130a
	Project_131
	Project_131a
	Project_132
	Project_132a
	Project_133
	Project_133a
	Project_134
	Project_134a
	Project_135
	Project_135a
	Project_136
	Project_136a
	Project_137
	Project_137a
	Project_138
	Project_138a
	Project_139
	Project_139a
	Project_140
	Project_140a
	Project_141
	Project_141a
	Project_142
	Project_142a
	Project_143
	Project_143a
	Project_144
	Project_144a
	Project_145
	Project_145a
	Project_146
	Project_146a
	Project_147
	Project_147a
	Project_148
	Project_148a
	Project_149
	Project_149a
	Project_150
	Project_150a
	Project_151
	Project_151a
	Project_152
	Project_152a
	Project_153
	Project_153a
	Project_154
	Project_154a
	Project_155
	Project_155a
	Project_156
	Project_156a
	Project_157
	Project_157a
	Project_158
	Project_158a
	Project_159
	Project_159a
	Project_160
	Project_160a
	Project_161
	Project_161a
	Project_162
	Project_162a
	Project_163
	Project_163a
	Project_164
	Project_164a
	Project_165
	Project_165a
	Project_166
	Project_166a
	Project_167
	Project_167a
	Project_168
	Project_168a
	Project_169
	Project_169a
	Project_170
	Project_170a
	Project_171
	Project_171a
	Project_172
	Project_172a
	Project_173
	Project_173a
	Project_174
	Project_174a
	Project_175
	Project_175a
	Project_176
	Project_176a
	Project_177
	Project_177a
	Project_178
	Project_178a
	Project_179
	Project_179a
	Project_180
	Project_180a
	Project_181
	Project_181a
	Project_182
	Project_182a
	Project_183
	Project_183a
	Project_184
	Project_184a
	Project_185
	Project_185a
	Project_186
	Project_186a
	Project_187
	Project_187a
	Project_188
	Project_188a
	Project_189
	Project_189a
	Project_190
	Project_190a
	Project_191
	Project_191a
	Project_192
	Project_192a
	Project_193
	Project_193a
	Project_194
	Project_194a
	Project_195
	Project_195a
	Project_196
	Project_196a
	Project_197
	Project_197a
	Project_198
	Project_198a
	Project_199
	Project_199a
	Project_200
	Project_200a
	Project_201
	Project_201a
	Project_202
	Project_202a
	Project_203
	Project_203a
	Project_204
	Project_204a
	Project_205
	Project_205a
	Project_206
	Project_206a
	Project_207
	Project_207a
	Project_208
	Project_208a
	Project_209
	Project_209a
	Project_210
	Project_210a
	Project_211
	Project_211a
	Project_212
	Project_212a
	Project_213
	Project_213a
	Project_214
	Project_214a
	Project_215
	Project_215a
	Project_216
	Project_216a
	Project_217
	Project_217a
	Project_218
	Project_218a
	Project_219
	Project_219a
	Project_220
	Project_220a
	Project_221
	Project_221a
	Project_222
	Project_222a
	Project_223
	Project_223a
	Project_224
	Project_224a
	Project_225
	Project_225a
	Project_226
	Project_226a
	Project_227
	Project_227a
	Project_228
	Project_228a
	Project_229
	Project_229a
	Project_230
	Project_230a
	Project_231
	Project_231a
	Project_232
	Project_232a
	Project_233
	Project_233a
	Project_234
	Project_234a
	Project_235
	Project_235a
	Project_236
	Project_236a
	Project_237
	Project_237a
	Project_238
	Project_238a
	Project_239
	Project_239a
	Project_240
	Project_240a
	Project_241
	Project_241a
	Project_242
	Project_242a
	Project_243
	Project_243a
	Project_244
	Project_244a
	Project_245
	Project_245a
	Project_246
	Project_246a
	Project_247
	Project_247a
	Project_248
	Project_248a
	Project_249
	Project_249a
	Project_250
	Project_250a
	Project_251
	Project_251a
	Project_252
	Project_252a
	Project_253
	Project_253a
	Project_254
	Project_254a
	Project_255
	Project_255a
	Project_256
	Project_256a
	Project_257
	Project_257a
	Project_258
	Project_258a
	Project_259
	Project_259a
	Project_260
	Project_260a
	Project_261
	Project_261a
	Project_262
	Project_262a
	Project_263
	Project_263a
	Project_264
	Project_264a
	Project_265
	Project_265a
	Project_266
	Project_266a
	Project_267
	Project_267a
	Project_268
	Project_268a
	Project_269
	Project_269a
	Project_270
	Project_270a
	Project_271
	Project_271a
	Project_272
	Project_272a
	Project_273
	Project_273a
	Project_274
	Project_274a
	Project_275
	Project_275a
	Project_276
	Project_276a
	Project_277
	Project_277a
	Project_278
	Project_278a
	Project_279
	Project_279a
	Project_280
	Project_280a
	Project_281
	Project_281a
	Project_282
	Project_282a
	Project_283
	Project_283a
	Project_284
	Project_284a
	Project_285
	Project_285a
	Project_286
	Project_286a
	Project_287
	Project_287a
	Project_288
	Project_288a
	Project_289
	Project_289a
	Project_290
	Project_290a
	Project_291
	Project_291a
	Project_292
	Project_292a
	Project_293
	Project_293a
	Project_294
	Project_294a
	Project_295
	Project_295a
	Project_296
	Project_296a
	Project_297
	Project_297a
	Project_298
	Project_298a
	Project_299
	Project_299a
	Project_300
	Project_300a
	Project_301
	Project_301a
	Project_302
	Project_302a
	Project_303
	Project_303a
	Project_304
	Project_304a
	Project_305
	Project_305a
	Project_306
	Project_306a
	Project_307
	Project_307a
	Project_308
	Project_308a
	Project_309
	Project_309a
	Project_310
	Project_310a
	Project_311
	Project_311a
	Project_312
	Project_312a
	Project_313
	Project_313a
	Project_314
	Project_314a
	Project_315
	Project_315a
	Project_316
	Project_316a
	Project_317
	Project_317a
	Project_318
	Project_318a
	Project_319
	Project_319a
	Project_320
	Project_320a
	Project_321
	Project_321a
	Project_322
	Project_322a
	Project_323
	Project_323a
	Project_324
	Project_324a
	Project_325
	Project_325a
	Project_326
	Project_326a
	Project_327
	Project_327a
	Project_328
	Project_328a
	Project_329
	Project_329a
	Project_330
	Project_330a
	Project_331
	Project_331a
	Project_332
	Project_332a
	Project_333
	Project_333a
	Project_334
	Project_334a
	Project_335
	Project_335a
	Project_336
	Project_336a
	Project_337
	Project_337a
	Project_338
	Project_338a
	Project_339
	Project_339a
	Project_340
	Project_340a
	Project_341
	Project_341a
	Project_342
	Project_342a
	Project_343
	Project_343a
	Project_344
	Project_344a
	Project_345
	Project_345a
	Project_346
	Project_346a
	Project_347
	Project_347a
	Project_348
	Project_348a
	Project_349
	Project_349a
	Project_350
	Project_350a
	Project_351
	Project_351a
	Project_352
	Project_352a
	Project_353
	Project_353a
	Project_354
	Project_354a
	Project_355
	Project_355a
	Project_356
	Project_356a
	Project_357
	Project_357a
	Project_358
	Project_358a
	Project_359
	Project_359a
	Project_360
	Project_360a
	Project_361
	Project_361a
	Project_362
	Project_362a
	Project_363
	Project_363a
	Project_364
	Project_364a
	Project_365
	Project_365a
	Project_366
	Project_366a
	Project_367
	Project_367a
	Project_368
	Project_368a

